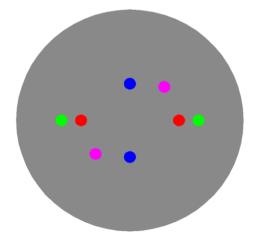




## xLED-LUM-6030 Pin Fin Heat Sink Ф60mm for LumiLEDs

## **Features VS Benefits**

- \* The xLED-LUM-6030 LumiLEDs Pin Fin LED Heat Sinks are specifically designed for luminaires using the LumiLEDs LED engines.
- \* Mechanical compatibility with direct mounting of the LED engines to the LED cooler and thermal performance matching the lumen packages.
- \* For spotlight and downlight designs from 500 to 1,600 lumen.
- \* Thermal resistance range Rth 5.0°C/W.
- \* Modular design with mounting holes foreseen for direct mounting of LumiLEDs COB series.
- \* Diameter 60mm standard height 30mm, Other heights on request.
- \* Forged from highly conductive aluminum.


### Zhaga LED engine and radiator assembly is a unified future international standardization

- \* Below you find an overview of LumiLEDs COB's and LED modules which standard fit on the Pin Fin LED Heat Sinks.
- \* In this way mechanical after work and related costs can be avoided, and lighting designers can standardize their designs on a limited number of LED Pin Fin LED Heat Sink.









### **LumiLEDs LED Modules directly Mounting Options** LumiLEDs COB series.

LUXEON CoB 1202s: L2C5-xxxx1202E0600; LUXEON CoB 1202HD: L2C5-xxxx1202EH600;

Direct mounting with machine screws M3x6.5mm

### LumiLEDs COB series.

LUXEON CoB 1203: L2C5-xxxx1203E0900;

With the Zhaga Book 3 holders for the green indicator marks.

Direct mounting with machine screws M3x6.5mm.

With the Zhaga Book 11 holders for the red indicator marks. BJB Holder:47.319.6104.50;

With the LEDiL products: Ronda series: FN15xxx-xx;





XLED

xLED-LUM-6030 Pin Fin Heat Sink Ф60mm for LumiLEDs

# **Mounting Options and Drawings & Dimensions**

Example:xLED-LUM-6030-B-1,2

Example:xLED-LUM-60 1 - 2 - 3

1 Height (mm)

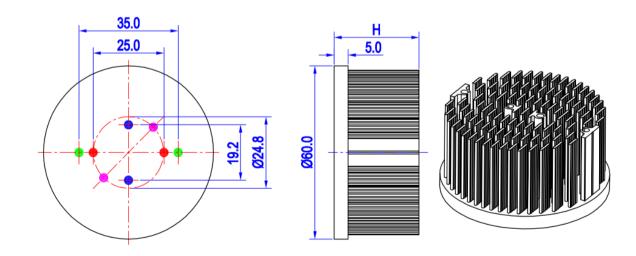
Anodising Color

B-Black

C-Clear

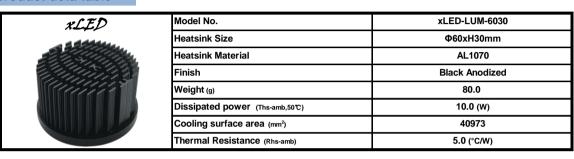
**Z-Custom** 

Mounting Options - see graphics for details Combinations available


Ex.order code - 12

means option 1 and 2 combined

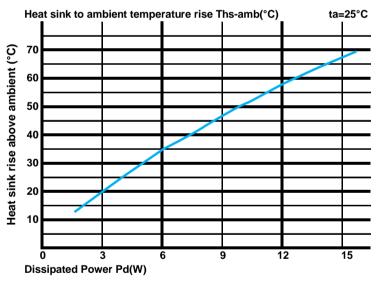
## Notes:


- Mentioned models are an extraction of full product range.
- For specific mechanical adaptations please contact MingfaTech.
- MingfaTech reserves the right to change products or specifications without prior notice.

| MOUNTING<br>OPTION | Module type                        | Holder NO.                   | LEDiL products |               | THREAD | THREAD | THREAD HOLE                       |
|--------------------|------------------------------------|------------------------------|----------------|---------------|--------|--------|-----------------------------------|
|                    |                                    |                              | Ronda series   | Olivia series | INCEAD | DEPTH  | DISTANCE                          |
| 1                  | LUXEON 1202s;<br>LUXEON 1202HD;    | /                            |                | 1             | М3     | 6.5mm  | 19.2mm/ 2-@180°                   |
| 2                  | LUXEON CoB M02;<br>LUXEON CoB M03; | BJB Holder<br>47.319.6104.50 | FN15xxx-xx;    |               | МЗ     | 6.5mm  | 25.0mm/ 2-@180°                   |
|                    | LUXEON 1202s;<br>LUXEON 1202HD;    | BJB Holder<br>47.319.6180.50 |                |               |        |        |                                   |
|                    |                                    | TE Holder<br>2213118-2       |                |               |        |        |                                   |
| 3                  | LUXEON 1202;<br>LUXEON 1203;       | /                            |                |               | M3     | 6.5mm  | 24.8mm/ 2-@180°                   |
| 4                  |                                    | TE Holder<br>2213382-1       |                |               | М3     | 6.5mm  | 35.0mm/ 2-@180°<br>(Zhaga Book 3) |

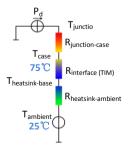





# The product deta table



## The thermal data table


- \* Please be aware the dissipated power Pd is not the same as the electrical power Pe of a LED module.
- \*To calculate the dissipated power please use the following formula:  $Pd = Pe \times (I \eta L)$ .
- Pd Dissipated power ; Pe Electrical power ;  $\eta L =$  Light effciency of the LED module;

| Pd = Pe x<br>(1-ηL)    |      | Heat sink to ambient<br>thermal resistance<br>Rhs-amb (°C/W) | Heat sink to ambient<br>temperature rise<br>Ths-amb (°C) |  |  |
|------------------------|------|--------------------------------------------------------------|----------------------------------------------------------|--|--|
|                        |      | xLED-LUM-6030                                                |                                                          |  |  |
| Dissipated Power Pd(W) | 3.0  | 6.67                                                         | 20.0                                                     |  |  |
|                        | 6.0  | 5.67                                                         | 34.0                                                     |  |  |
|                        | 9.0  | 5.11                                                         | 46.0                                                     |  |  |
|                        | 12.0 | 4.83                                                         | 58.0                                                     |  |  |
|                        | 15.0 | 3.80                                                         | 57.0                                                     |  |  |



- \*The aluminum substrate side of the package outer shell is thermally connected to the heat sink via TIM (Thermal interface material).
- $\label{thm:mingFa} \mbox{MingFa recommends the use of a high thermal conductive interface between the LED module and the LED cooler.}$

 $Either thermal\ grease, A\ thermal\ pad\ or\ a\ phase\ change\ thermal\ pad\ thickness\ 0.\ I-0.\ I\ 5mm\ is\ recommended.$ 



- \*Thermal resistance is a heat property and a measurement of a temperature difference by which an object or material resists a heat flow. Geometric shapes are different, the thermal resistance is different. Formula:  $\theta = (Ths Ta)/Pd$
- $\theta\,$  Thermal Resistance [°C/W] ; Ths - Heatsink temperature ; Ta - Ambient temperature ;
- \*The thermal resistance between the junction section of the light-emitting diode and the aluminum substrate side of the package outer shell is  $R_{junction-case}$ , the thermal resistance of the TIM outside the package is  $R_{interface}(TIM)$  [°C/M], the thermal resistance with the heat sink is  $R_{heatsink-ambient}$  [°C/M], and the ambient temperature is  $T_{ambient}$  [°C/].
- \*Thermal resistances outside the package  $R_{interface \, (TIM)}$  and  $R_{heatsink-ambient}$  can be integrated into the thermal resistance  $R_{case-ambient}$  at this point. Thus, the following formula is also used:  $T_{junction} = (R_{junction-case} + R_{case-ambient})^{p}Pd + T_{ambient}$

. .

