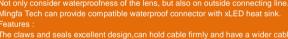

xLED-16560 Passive Pin Fin Heatsink Φ165mm

Features VS Benefits

- * Mechanical compatibility with direct mounting of the SMD products to the LED cooler and thermal performance matching the lumen packages.
- * For flood light, street light and high bay designs from 4,400 to 11,000 lumen.
- * Thermal resistance range Rth 0.55°C/W.
- * Product size: Diameter 165mm Standard height 60mm, Other widths on request.
- * Forged from highly conductive aluminium for optimal thermal performance (AL1070), aluminium 1070 thermal conductivity is 2.0 times higher than ADC12.
- * 2 standard colors clear anodised black anodised
- * Waterproof level designs from IP65 to IP67.
- * With the SMD products (3030 , 2835 , 5050......): Bridgelux , Cree , Edison , Citizen , LG Innotek Lumileds, Luminus, Lumens, Nichia, Osram, Prolight Opto, Seoul, Samsung, Sharp.

The LED engine and radiator assembly directly Mounting Options


- * Below you find an overview of SMD products which standard fit on the xLED series coolers.
- * In this way mechanical after work and related costs can be avoided, and lighting designers can standardize their designs on a limited number of LED coolers.

- ge.Resistant to salt water. weak acid, alcohol,oil,grease and common solvency. Working temperature:Min -40℃ to Max 120℃.

- Protection degree:IP68

Mingfa tech product number 1、21000001-04 (M8)

- MEAN WELL: HBG-100 Series

Order Information

Example:xLED-16560-B Example:xLED-16560 -

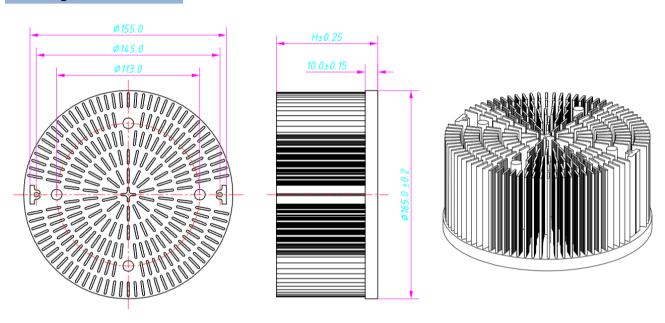
Anodising Color

B-Black

C-Clear

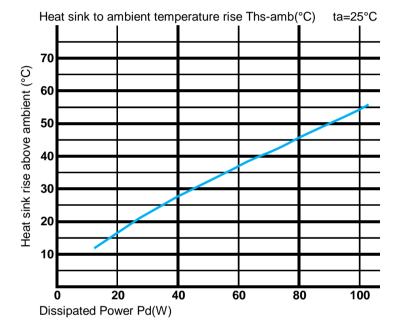
Z-Custom

Notes:


- Mentioned models are an extraction of full product range.
- For specific mechanical adaptations please contact MingfaTech.
- MingfaTech reserves the right to change products or specifications

Drawings & Dimensions

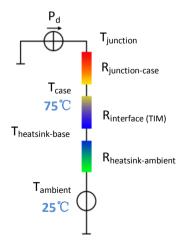
Product deta table



xLED-16560 Passive Pin Fin Heatsink Φ165mm

The thermal data table

- * Please be aware the dissipated power Pd is not the same as the electrical power Pe of a LED module.
- *To calculate the dissipated power please use the following formula: $Pd = Pe x (1-\eta L)$.
- Pd Dissipated power; Pe Electrical power; nL = Light effciency of the LED module;


_			
Pd = Pe x (1-ηL)		Heat sink to ambient thermal resistance Rhs-amb (°C/W)	Heat sink to ambient temperature rise Ths-amb (°C)
		xLED-16560	
Dissipated Power Pd(W)	20.0	0.80	16.0
	40.0	0.68	27.0
	60.0	0.60	36.0
	80.0	0.56	45.0
	100.0	0.54	54.0

*The aluminum substrate side of the package outer shell is thermally connected to the heat sink via TIM (Thermal interface material).

MingFa recommends the use of a high thermal conductive interface between the LED module and the LED cooler.

Either thermal grease, A thermal pad or a phase change thermal pad thickness 0.1-0.15mm is recommended.

*Thermal resistance is a heat property and a measurement of a temperature difference by which an object or material resists a heat flow.

Geometric shapes are different, the thermal resistance is different.

Formula: $\theta = (Ths - Ta)/Pd$

- θ Thermal Resistance [°C/W] ; Ths Heatsink temperature ; Ta Ambient temperature
- *The thermal resistance between the junction section of the light-emitting diode and the aluminum substrate side of the package outer shell is $R_{junction\text{-}case}$, the thermal resistance of the TIM outside the package is $R_{interface\ (TIM)}$ [°C/W], the thermal resistance with the heat sink is $R_{heatsink\text{-}ambient}$ [°C/W], and the ambient temperature is $T_{ambient}$ [°C].
- *Thermal resistances outside the package $R_{interface \, (TIM)}$ and $R_{heatsink-ambient}$ can be integrated into the thermal resistance $R_{case-ambient}$ at this point. Thus, the following formula is also used:

T_{junction}=(R_{junction-case}+R_{case-ambient})•Pd+T_{ambient}

