

xLED-VOS-8050 Pin Fin LED Heat Sink Ø80mm for Vossloh-Schwabe

Features VS Benefits

- * The xLED-VOS-8050 Vossloh-Schwabe Pin Fin LED Heat Sinks are specifically designed for luminaires using the Vossloh-Schwabe LED engines.
- * Mechanical compatibility with direct mounting of the LED engines to the LED cooler and thermal performance matching the lumen packages.
- * For spotlight and downlight designs from 1,100 to 3,400 lumen.
- * Thermal resistance range Rth 2.38°C/W.
- * Modular design with mounting holes foreseen for direct mounting of Vossloh-Schwabe COB series.
- * Diameter 80.0mm standard height 50.0mm Other heights on request.
- * Forged from highly conductive aluminum.
- Zhaga LED engine and radiator assembly is a unified future international standardization

* Below you find an overview of Vossloh-Schwabe COB's and LED modules which standard fit on the Pin Fin LED Heat Sinks.

- * In this way mechanical after work and related costs can be avoided, and lighting designers
- can standardize their designs on a limited number of LED Pin Fin LED Heat Sink.

Tel:+86-769-39023131 Fax:+86-(020)28819702 ext:22122 Email:sales@mingfatech.com Http://www.heatsinkled.com Http://www.mingfatech.com

XLED

xLED-VOS-8050 Pin Fin LED Heat Sink Ø80mm for Vossloh-Schwabe

Mounting Options and Drawings & Dimensions

Example:xLED-VOS-8050-B-1,2 Example:xLED-VOS-80 Height (mm) Anodising Color B-Black C-Clear

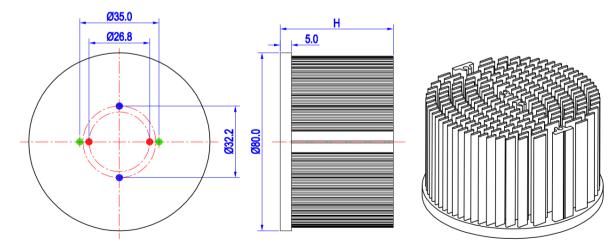
Z-Custom

Ex.order code - 12

Notes:

- Mentioned models are an extraction of full product range.

- For specific mechanical adaptations please contact MingfaTech.


means option 1 and 2 combined

details Combinations available

Mounting Options - see graphics for

- MingfaTech reserves the right to change products or specifications without prior notice.

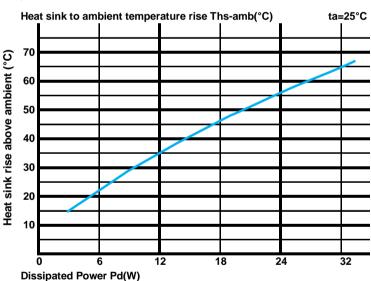
MOUNTING OPTION	Module type	Holder NO.	THREAD	THREAD DEPTH	THREAD HOLE DISTANCE
1	COB series (19.0*19.0)	/	М3	6.5mm	26.8mm/ 2-@180°
2	COB series (28.0*28.0)	/	M3	6.5mm	32.2mm/ 2-@180°
3		BJB Holder 47.319.2030.50	M3	6.5mm	35.0mm/ 2-@180° (Zhaga book 3)
		AAG.STUCCHI 8102-G2			
	COB series (19.0*19.0)	BJB Holder 47.319.2021.50			
		AAG.STUCCHI 8101-G2			

Tel:+86-769-39023131 Fax:+86-(020)28819702 ext:22122 Email:sales@mingfatech.com Http://www.heatsinkled.com Http://www.mingfatech.com

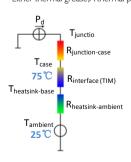
xLED-VOS-8050 Pin Fin LED Heat Sink Ø80mm for Vossloh-Schwabe

The product deta table

xLED	Model No.	xLED-VOS-8050
	Heatsink Size	Ф80хН50mm
	Heatsink Material	AL1070
	Finish	Black Anodized
	Weight (g)	197.0
	Dissipated power (Ths-amb,50℃)	21.0 (W)
	Cooling surface area (mm ²)	120774
	Thermal Resistance (Rhs-amb)	2.38 (°C/W)


The thermal data table

* Please be aware the dissipated power Pd is not the same as the electrical power Pe of a LED module.


*To calculate the dissipated power please use the following formula: $Pd = Pe \times (I - \eta L)$.

Pd - Dissipated power ; Pe - Electrical power ; $\eta L =$ Light effciency of the LED module;

Pd = Pe x (1-ηL)		Heat sink to ambient thermal resistance Rhs-amb (°C/W)	Heat sink to ambient temperature rise Ths-amb (°C)	
		xLED-VOS-8050		
Dissipated Power Pd(W)	6.0	3.50	21.0	
	12.0	2.92	35.0	
	18.0	2.56	46.0	
	24.0	2.29	55.0	
	32.0	2.00	64.0	

*The aluminum substrate side of the package outer shell is thermally connected to the heat sink via TIM (Thermal interface material). MingFa recommends the use of a high thermal conductive interface between the LED module and the LED cooler. Either thermal grease, A thermal pad or a phase change thermal pad thickness 0.1-0.15mm is recommended.

*Thermal resistance is a heat property and a measurement of a temperature difference by which an object or material resists a heat flow. Geometric shapes are different, the thermal resistance is different. Formula: $\theta = (Ths - Ta)/Pd$

 $\theta\,$ - Thermal Resistance [°C/W] ; $\,$ Ths - Heatsink temperature ; $\,$ Ta - Ambient temperature ;

*The thermal resistance between the junction section of the light-emitting diode and the aluminum substrate side of the package outer shell is $R_{\text{junction-case}}$, the thermal resistance of the TIM outside the package is $R_{\text{interface (TIM)}}$ [°C/W], the thermal resistance with the heat sink is $R_{\text{heatsink-ambert}}$ [°C/W], and the ambient temperature is T_{ambert} [°C].

*Thermal resistances outside the package $R_{interface (TIM)}$ and $R_{heatsink-ambient}$ can be integrated into the thermal resistance $R_{case-ambient}$ at this point. Thus, the following formula is also used: $T_{junction}=(R_{junction-case}+R_{case-ambient})$ Pd+ $T_{ambient}$

Tel:+86-769-39023131 Fax:+86-(020)28819702 ext:22122 Email:sales@mingfatech.com Http://www.heatsinkled.com Http://www.mingfatech.com

