
GooLED-VOS-4850 Pin Fin LED Heat Sink Φ48mm for Vossloh-Schwabe **Features VS Benefits**

- * The GooLED-VOS-4850 Vossloh-Schwabe Pin Fin LED Heat Sinks are specifically designed for luminaires using the Vossloh-Schwabe LED engines.
- * Mechanical compatibility with direct mounting of the LED engines to the LED cooler and thermal performance matching the lumen packages.
- * For spotlight and downlight designs from 500 to 1,600 lumen.
- * Thermal resistance range Rth 5.0°C/W.
- * Modular design with mounting holes foreseen for direct mounting of Vossloh-Schwabe COB series.
- * Diameter 48.0mm standard height 50.0mm Other heights on request.
- * Forged from highly conductive aluminum.

Zhaga LED engine and radiator assembly is a unified future international standardization

- * Below you find an overview of Vossloh-Schwabe COB's and LED modules which standard fit on the Pin Fin LED Heat Sinks.
- * In this way mechanical after work and related costs can be avoided, and lighting designers can standardize their designs on a limited number of LED Pin Fin LED Heat Sink.

Vossloh-Schwabe LED Modules directly Mounting Options Vossloh-Schwabe LUGA Shop Gen. 5/ Gen.6 COB Series (13.5*13.5): :

DMS124***H; DMS123***G:

With the Zhaga Book 11 holders for the green indicator marks.

AAG.STUCCHI: 8100-G2

Without the holders for the pink indicator marks. Direct mounting with machine screws M3x6.5mm

Vossloh-Schwabe LUGA Shop Gen. 5/ Gen.6 COB Series (19.0*19.0):

DMS125***H; DMS126***H; DMS126***G;

Vossloh-Schwabe LUGA Shop TW COB Series:

With the Zhaga Book 3 holders for the blue indicator marks.

Without the holders for the red indicator marks.

Direct mounting with machine screws M3x6.5mm.

GOOLED

GooLED-VOS-4850 Pin Fin LED Heat Sink Φ48mm for Vossloh-Schwabe

Mounting Options and Drawings & Dimensions

Example:GooLED-VOS-4850-B-1,2

Example:GooLED-VOS-48 1 - 2 -

Height (mm)

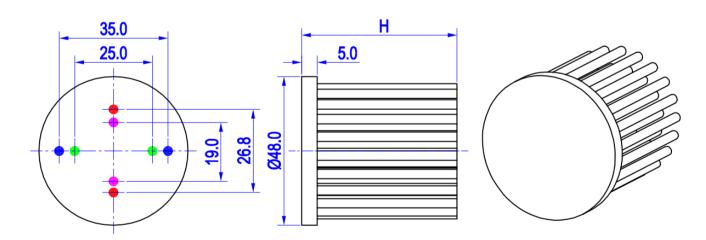
Anodising Color

B-Black

C-Clear

Z-Custom

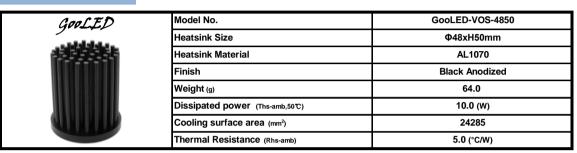
Mounting Options - see graphics for details Combinations available

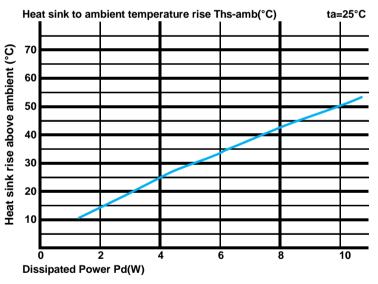

Ex.order code - 12

means option 1 and 2 combined

Notes:

- Mentioned models are an extraction of full product range.
- For specific mechanical adaptations please contact MingfaTech.
- MingfaTech reserves the right to change products or specifications without prior notice.


MOUNTING OPTION	Module type	Holder NO.	THREAD	THREAD DEPTH	THREAD HOLE DISTANCE
1	COB series (13.5*13.5)	/	М3	6.5mm	19.0mm/ 2-@180°
2		BJB Holder 47.319.6294.50	М3	6.5mm	25.0mm/ 2-@180° (Zhaga book 11)
		AAG.STUCCHI 8100-G2	МЗ	6.5mm	
3	COB series (19.0*19.0)	/			26.8mm/ 2-@180°
4		BJB Holder 47.319.2021.50			35.0mm/ 2-@180° (Zhaga book 3)
		AAG.STUCCHI 8101-G2			


The product deta table

The thermal data table

- * Please be aware the dissipated power Pd is not the same as the electrical power Pe of a LED module.
- *To calculate the dissipated power please use the following formula: $Pd = Pe \times (I \eta L)$.
 - Pd Dissipated power ; Pe Electrical power ; $\eta L = \text{Light effciency of the LED module};$

Pd = Pe x (1-ηL)		Heat sink to ambient thermal resistance Rhs-amb (°C/W)	Heat sink to ambient temperature rise Ths-amb (°C)				
		GooLED-VOS-4850					
Dissipated Power Pd(W)	2.0	7.00	14.0				
	4.0	6.25	25.0				
	6.0	5.67	34.0				
	8.0	5.38	43.0				
	10.0	5.00	50.0				

- *The aluminum substrate side of the package outer shell is thermally connected to the heat sink via TIM (Thermal interface material).
- MingFa recommends the use of a high thermal conductive interface between the LED module and the LED cooler.

Either thermal grease, A thermal pad or a phase change thermal pad thickness 0.1-0.15mm is recommended.

- *Thermal resistance is a heat property and a measurement of a temperature difference by which an object or material resists a heat flow. Geometric shapes are different, the thermal resistance is different. Formula: $\theta = (Ths Ta)/Pd$
- $oldsymbol{ heta}$ Thermal Resistance [°C/W] ; Ths Heatsink temperature ; Ta Ambient temperature ;
- *The thermal resistance between the junction section of the light-emitting diode and the aluminum substrate side of the package outer shell is $R_{junction-case}$, the thermal resistance of the TIM outside the package is $R_{interface}(TIM)$ [°C/M], the thermal resistance with the heat sink is $R_{heatsink-ambient}$ [°C/M], and the ambient temperature is $T_{ambient}$ [°C/].
- *Thermal resistances outside the package $R_{interface \, (TIM)}$ and $R_{heatsink-ambient}$ can be integrated into the thermal resistance $R_{case-ambient}$ at this point. Thus, the following formula is also used:

 $T_{junction} = (R_{junction\text{-}case} + R_{case\text{-}ambient}) \cdot Pd + T_{ambient}$