

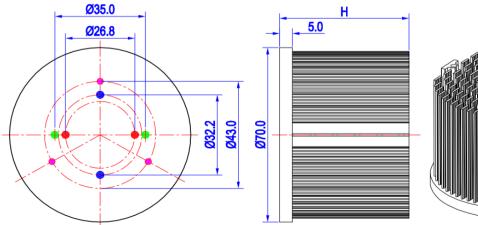
Tel:+86-769-39023131 Fax:+86-(020)28819702 ext:22122 Email:sales@mingfatech.com Http://www.heatsinkled.com Http://www.mingfatech.com

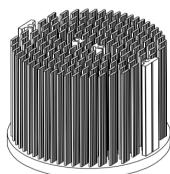
Example:xLED-SEO-70 1 Height (mm) Anodising Color B-Black C-Clear Z-Custom

Notes:

- Mentioned models are an extraction of full product range.

Ex.order code - 12


Mounting Options - see graphics for


details Combinations available

means option 1 and 2 combined

For specific mechanical adaptations please contact MingfaTech.MingfaTech reserves the right to change products or specifications without prior notice.

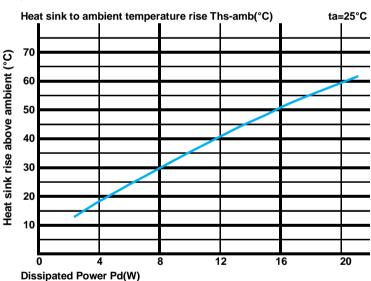
MOUNTING OPTION	Module type	Holder NO.	LEDiL products		THREAD	THREAD	THREAD HOLE
			Olivia series	Ronda series	INKEAD	DEPTH	DISTANCE
1	COB Size 19×19mm	/	FN14637-S; FN14828-M;	FN15xxx-xx;	М3	6.5mm	26.8mm/ 2-@180°
2	COB Size 28×28mm	/	/	/	М3	6.5mm	32.2mm/ 2-@180°
		BJB Holder 47.319.2030.50		/	M3	6.5mm	35.0mm/ 2-@180° (Zhaga book 3)
3		AAG.STUCCHI 8102-G2					
	COB Size 19×19mm	BJB Holder 47.319.2021.50	FN14637-S; FN14828-M;	FN15xxx-xx;			
		AAG.STUCCHI 8101-G2					
4	AC Module	/	/	/	M2	6.5mm	43.0mm/ 3-@120°

Tel:+86-769-39023131 Fax:+86-(020)28819702 ext:22122 Email:sales@mingfatech.com Http://www.heatsinkled.com Http://www.mingfatech.com

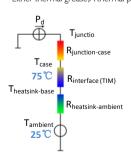
xLED-SEO-7050 Pin Fin Heat Sink ϕ 70mm for Seoul

The product deta table

xLED	Model No.	xLED-SEO-7050		
	Heatsink Size	Φ70xH50mm		
	Heatsink Material	AL1070		
	Finish	Black Anodized		
	Weight (g)	150.0		
	Dissipated power (Ths-amb,50℃)	16.0 (W)		
	Cooling surface area (mm ²)	91577		
	Thermal Resistance (Rhs-amb)	3.13 (°C/W)		


The thermal data table

* Please be aware the dissipated power Pd is not the same as the electrical power Pe of a LED module.


*To calculate the dissipated power please use the following formula: $Pd = Pe \times (I - \eta L)$.

Pd - Dissipated power ; Pe - Electrical power ; $\eta L = \text{Light}$ effciency of the LED module;

Pd = Pe x (1-ηL)		Heat sink to ambient thermal resistance Rhs-amb (°C/W)	Heat sink to ambient temperature rise Ths-amb (°C)	
		xLED-SEO-7050		
Dissipated Power Pd(W)	4.0	4.25	17.0	
	8.0	3.63	29.0	
	12.0	3.33	40.0	
	16.0	3.13	50.0	
	20.0	2.95	59.0	

*The aluminum substrate side of the package outer shell is thermally connected to the heat sink via TIM (Thermal interface material). MingFa recommends the use of a high thermal conductive interface between the LED module and the LED cooler. Either thermal grease, A thermal pad or a phase change thermal pad thickness 0.1-0.15mm is recommended.

*Thermal resistance is a heat property and a measurement of a temperature difference by which an object or material resists a heat flow. Geometric shapes are different, the thermal resistance is different. Formula: $\theta = (Ths - Ta)/Pd$

 $\theta\,$ - Thermal Resistance [°C/W] ; $\,$ Ths - Heatsink temperature ; $\,$ Ta - Ambient temperature ;

*The thermal resistance between the junction section of the light-emitting diode and the aluminum substrate side of the package outer shell is $R_{\text{junction-case}}$, the thermal resistance of the TIM outside the package is $R_{\text{interface (TIM)}}$ [°C/W], the thermal resistance with the heat sink is $R_{\text{heatsink-ambent}}$ [°C/W], and the ambient temperature is T_{ambent} [°C].

*Thermal resistances outside the package $R_{interface (TIM)}$ and $R_{heatsink-ambient}$ can be integrated into the thermal resistance $R_{case-ambient}$ at this point. Thus, the following formula is also used: $T_{junction}=(R_{junction-case}+R_{case-ambient})$ Pd+ $T_{ambient}$

Tel:+86-769-39023131 Fax:+86-(020)28819702 ext:22122 Email:sales@mingfatech.com Http://www.heatsinkled.com Http://www.mingfatech.com

