

EtraLED-CIT-9650 Citizen Modular Passive Star LED Heat Sink Φ96mm

Features VS Benefits

- * The EtraLED-CIT-9650 Citizen modular passive star LED heat sink are specifically designed for luminaires using the Citizen LED engines.
- * Mechanical compatibility with direct mounting of the LED engines to the LED cooler and thermal performance matching the lumen packages.
- * For spotlight and downlight designs from 2,000 to 5,100 lumen.
- * Thermal resistance range Rth 1.45°C/W.
- * Modular design with mounting holes foreseen for direct mounting of citizen COB series.
- * Diameter 96mm standard height 50mm Other heights on request.
- * Extruded from highly conductive aluminum.

Zhaga LED engine and radiator assembly is a unified future international standardization

- * Below you find an overview of Citizen COB's and LED modules which standard fit on the srar LED heat sinks.
- * In this way mechanical after work and related costs can be avoided, and lighting designers can standardize their designs on a limited number of srar LED heat sinks.

CLU046-12xxxx; CLU048-12xxxx CLU046-18xxxx; CLU048-18xxxx;

Citizen High intensity COB Series:

BJB holder: 47.319.2030.50; AAG.STUCCHI: 8102-G2 Direct mounting with machine screws M3x6.5mm

Citizen LED Modules directly Mounting Options

Citizen COB version 4, version 5, version 6 Series:

CLU038-12xxxx

Citizen High intensity COB Series:

With the Zhaga Book 3 holders for the green indicator marks. Direct mounting with machine screws M3x6.5mm

Mounting Options and Drawings & Dimensions

Example: EtraLED-CIT-9650-B-1,2

Example:EtraLED-CIT-96 1 - 2

1 Height (mm)

2 Anodising Color

B-Black

C-Clear

Z-Custom

Mounting Options - see graphics for details Combinations available

Ex.order code - 12

means option 1 and 2 combined

Notes:

- Mentioned models are an extraction of full product range.
- For specific mechanical adaptations please contact MingfaTech.
- MingfaTech reserves the right to change products or specifications without prior notice.

MOUNTING OPTION	Module type	Holder NO.	THREAD	THREAD DEPTH	THREAD HOLE DISTANCE
1	CLU036; CLU038 CLU721; CLU711	/	М3	6.5mm	26.8mm/ 2-@180°
2	CLU046; CLU048 CLU731	/	М3	6.5mm	32.2mm/ 2-@180°
3		BJB Holder 47.319.2030.50	МЗ	6.5mm	35.0mm/ 2-@180° (Zhaga book 3)
		AAG.STUCCHI 8102-G2			
	CLU036; CLU038 CLU721; CLU711	BJB Holder 47.319.2021.50			
		AAG.STUCCHI 8101-G2			

The product deta table

The thermal data table

- * Please be aware the dissipated power Pd is not the same as the electrical power Pe of a LED module.
- *To calculate the dissipated power please use the following formula: $Pd = Pe \times (1-\eta L)$.
 - Pd Dissipated power ; Pe Electrical power ; $\eta L =$ Light effciency of the LED module;

Pd = Pe x (1-ηL)		Heat sink to ambient thermal resistance Rhs-amb (°C/W)	Heat sink to ambient temperature rise Ths-amb (°C)	
		EtraLED-CIT-9650		
Dissipated Power Pd(W)	8.0	2.25	18.0	
	16.0	1.88	30.0	
	24.0	1.67	40.0	
	32.0	1.50	48.0	
	40.0	1.40	56.0	

- *The aluminum substrate side of the package outer shell is thermally connected to the heat sink via TIM (Thermal interface material).

 MingFa recommends the use of a high thermal conductive interface between the LED module and the LED cooler.
- $Either thermal\ grease, A\ thermal\ pad\ or\ a\ phase\ change\ thermal\ pad\ thickness\ 0.\ I-0.\ I\ 5mm\ is\ recommended.$

- *Thermal resistance is a heat property and a measurement of a temperature difference by which an object or material resists a heat flow. Geometric shapes are different, the thermal resistance is different. Formula: $\theta = (Ths Ta)/Pd$
- $\theta\,$ Thermal Resistance [°C/W] ; Ths - Heatsink temperature ; Ta - Ambient temperature ;
- *The thermal resistance between the junction section of the light-emitting diode and the aluminum substrate side of the package outer shell is $R_{\text{junction-case}}$, the thermal resistance of the TIM outside the package is $R_{\text{interface}}(TIM)$ [°C/W], the thermal resistance with the heat sink is $R_{\text{heatsink-ambient}}$ [°C/W], and the ambient temperature is T_{ambient} [°C].
- *Thermal resistances outside the package $R_{\text{interface (TIM)}}$ and $R_{\text{heatsink-ambient}}$ can be integrated into the thermal resistance $R_{\text{case-ambient}}$ at this point. Thus, the following formula is also used: $T_{\text{junction-case}} + R_{\text{case-ambient}}) \cdot Pd + T_{\text{ambient}}$

