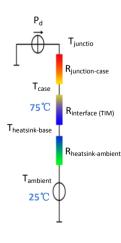


The thermal data table

Pd=Pe x (1-ηL)		Heat sink to ambient thermal resistance Rhs-amb(°C/W)	Heat sink to ambient temperature rise Ths-amb(°C)	Ô
		Cube-90		nt (°
Dissipated Power Pd(W)	2	3.35	7.1	Heat sink rise above ambient (°C)
	5	3.00	16	
	8	2.83	24.2	
	10	2.75	29.5	
	12	2.68	34.5	
	15	2.61	42.2	at sii
	20	2.53	54.5	He

* Please be aware the dissipated power Pd is not the same as the electrical power Pe of a LED module.


*To calculate the dissipated power please use the following formula: $Pd = Pe x (1-\eta L)$.

Pd - Dissipated power ; Pe - Electrical power ; ηL = Light effciency of the LED module;

*The aluminum substrate side of the package outer shell is thermally connected to the heat sink via TIM (Thermal interface material).

MingFa recommends the use of a high thermal conductive interface between the LED module and the LED cooler.

Either thermal grease, A thermal pad or a phase change thermal pad thickness 0.1-0.15mm is recommended.

*Thermal resistance is a heat property and a measurement of a temperature difference by which an object or material resists a heat flow.
Geometric shapes are different, the thermal resistance is different. Formula: θ = (Ths-Ta)/Pd
θ - Thermal Resistance [°C/W]; Ths - Heatsink temperature; Ta - Ambient temperature;
*The thermal resistance between the junction section of the light-emitting diode and the aluminum substrate side of the package outer
shell is R_{junction-case}, the thermal resistance of the TIM outside the package is R_{interface (TIM)} [°C/W], the thermal resistance with the
heat sink is R_{heatsink-ambient} [°C/W], and the ambient temperature is T_{ambient} [°C].
*Thermal resistances outside the package R_{interface (TIM)} and R_{heatsink-ambient} can be integrated into the thermal resistance R_{case-ambient} at this point. Thus, the following formula is also used:

 $T_{junction} = (R_{junction-case} + R_{case-ambient}) \cdot Pd + T_{ambient}$

Tel:+86-769-39023131 E-fax:+86-(020)28819702 ext:22122 Email:sales@mingfatech.com Http://www.heatsinkled.com Http://www.mingfatech.com

