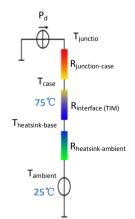


The thermal data table


ePe x -ηL)	Heat sink to ambient thermal resistance Rhs-amb(°C/W)	Heat sink to ambient temperature rise Ths-amb(°C)
	Cube-165	
5	1.46	7.4
15	1.41	21.5
20	1.38	28
30	1.28	39
35	1.24	44
40	1.21	49
45	1.18	54
	5 15 20 30 35 40	thermal resistance Rhs-amb(°C/W) 5 1.46 15 1.41 20 1.38 30 1.28 35 1.24 40 1.21

- * Please be aware the dissipated power Pd is not the same as the electrical power Pe of a LED module.
- *To calculate the dissipated power please use the following formula: $Pd = Pe \ x \ (1-\eta L)$.
- Pd Dissipated power; Pe Electrical power; $\eta L = Light$ effciency of the LED module;
- *The aluminum substrate side of the package outer shell is thermally connected to the heat sink via TIM (Thermal interface material).

MingFa recommends the use of a high thermal conductive interface between the LED module and the LED cooler.

Either thermal grease, A thermal pad or a phase change thermal pad thickness 0.1-0.15mm is recommended.

*Thermal resistance is a heat property and a measurement of a temperature difference by which an object or material resists a heat flow.

Geometric shapes are different, the thermal resistance is different. Formula: $\theta = (Ths - Ta)/Pd$

- θ Thermal Resistance [°C/W]; Ths Heatsink temperature; Ta Ambient temperature;
- *The thermal resistance between the junction section of the light-emitting diode and the aluminum substrate side of the package outer
- shell is $R_{junction-case}$, the thermal resistance of the TIM outside the package is $R_{interface\ (TIM)}$ [°C/W], the thermal resistance with the
- heat sink is $R_{heatsink-ambient}$ [°C/W], and the ambient temperature is $T_{ambient}$ [°C].
- *Thermal resistances outside the package $R_{\text{interface (TIM)}}$ and $R_{\text{heatsink-ambient}}$ can be integrated

into the thermal resistance $R_{\text{case-ambient}}$ at this point. Thus, the following formula is also used:

 $T_{junction} = (R_{junction\text{-}case} + R_{case\text{-}ambient}) \cdot Pd + T_{ambient}$