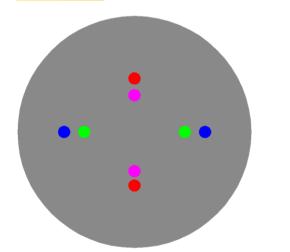


# **Features VS Benefits**

- \* The GooLED-LUN-5830 Luminus Pin Fin LED Heat Sinks are specifically designed for luminaires using the Luminus LED engines.
- \* Mechanical compatibility with direct mounting of the LED engines to the LED cooler and thermal performance matching the lumen packages.
- \* For spotlight and downlight designs from 500 to 1,600 lumen.
- \* Thermal resistance range Rth 5.0°C/W.
- \* Modular design with mounting holes foreseen for direct mounting of Luminus COB series.
- \* Diameter 58mm standard height 30mm, Other heights on request.
- \* Forged from highly conductive aluminum.

Zhaga LED engine and radiator assembly is a unified future international standardization \* Below you find an overview of Luminus COB's and LED modules which standard fit on the Pin Fin LED Heat Sinks.


- \* In this way mechanical after work and related costs can be avoided, and lighting designers
- can standardize their designs on a limited number of LED Pin Fin LED Heat Sink.







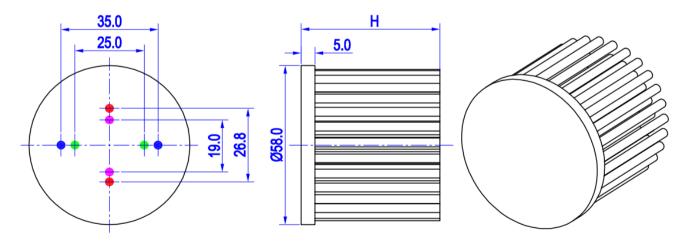




Tel:+86-769-39023131 Fax:+86-(020)28819702 ext:22122 Email:sales@mingfatech.com Http://www.heatsinkled.com Http://www.mingfatech.com



# Luminus LED Modules directly Mounting Options Luminus COB series. CIM/ CLM/CXM-9 -AC; With the Zhaga Book 11 holders for the green indicator marks. Without the holders for the pink indicator marks. Direct mounting with machine screws M3x6.5mm


#### Luminus COB series.

With the Zhaga Book 3 holders for the blue indicator marks. Without the holders for the red indicator marks. Direct mounting with machine screws M3x6.5mm. With the LEDiL products: Lena series: CN12xxx; Lenina series: CN12xxx; C12xxx;





|   | 1 | CXM-6-AC;<br>CIM/ CLM/CXM-9 -AC; | /                            | CN14xxx;<br>C12xxx; | CN14xxx;<br>C12xxx; | M3 | 6.5mm | 19.0mm/ 2-@180°                    |
|---|---|----------------------------------|------------------------------|---------------------|---------------------|----|-------|------------------------------------|
| ſ | 2 |                                  | BJB Holder<br>47.319.6060.50 |                     |                     | M3 | 6.5mm | 25.0mm/ 2-@180°<br>(Zhaga book 11) |
|   |   |                                  | TE Holder<br>2213678-5       |                     |                     |    |       |                                    |
| ſ | 3 | CXM-11;<br>CIM/CLM/CXM-14        | /                            | CN12xxx;<br>C12xxx; | CN12xxx;            | M3 | 6.5mm | 26.8mm/ 2-@180°                    |
| I | 4 |                                  | BJB Holder<br>47.319.2021.50 |                     |                     | M3 | 6.5mm | 35.0mm/ 2-@180°<br>(Zhaga book 3)  |
|   |   |                                  | TE Holder<br>2213254-1       |                     |                     |    |       |                                    |



Tel:+86-769-39023131 Fax:+86-(020)28819702 ext:22122 Email:sales@mingfatech.com Http://www.heatsinkled.com Http://www.mingfatech.com

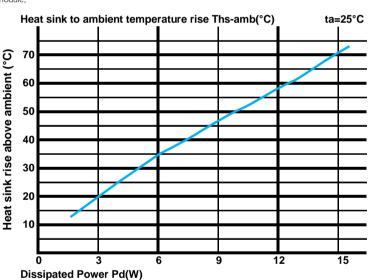




# GooLED-LUN-5830 Pin Fin LED Heat Sink Ø58mm for Luminus

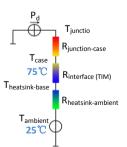
## The product deta table

| GooLED            | Model No.                               | GooLED-LUN-5830 |  |  |
|-------------------|-----------------------------------------|-----------------|--|--|
| <u> </u>          | Heatsink Size                           | Ф58xH30mm       |  |  |
| <u>مەراپلىلىد</u> | Heatsink Material                       | AL1070          |  |  |
|                   | Finish                                  | Black Anodized  |  |  |
|                   | Weight (g)                              | 79.0            |  |  |
|                   | Dissipated power (Ths-amb,50℃)          | 10.0 (W)        |  |  |
|                   | Cooling surface area (mm <sup>2</sup> ) | 27134           |  |  |
|                   | Thermal Resistance (Rhs-amb)            | 5.0 (°C/W)      |  |  |


### The thermal data table

\* Please be aware the dissipated power Pd is not the same as the electrical power Pe of a LED module.

\*To calculate the dissipated power please use the following formula:  $Pd = Pe \times (1 - \eta L)$ .


Pd - Dissipated power ; Pe - Electrical power ;  $\eta L$  = Light effciency of the LED module;

| Pd =                   | = Pe x | Heat sink to ambient<br>thermal resistance<br>Rhs-amb (°C/W) | Heat sink to ambient<br>temperature rise<br>Ths-amb (°C) |  |  |
|------------------------|--------|--------------------------------------------------------------|----------------------------------------------------------|--|--|
| (1                     | -ηL)   | GoolED-LUN-5830                                              |                                                          |  |  |
| (M)                    | 3.0    | 6.67                                                         | 20.0                                                     |  |  |
| er Pd(                 | 6.0    | 5.83                                                         | 35.0                                                     |  |  |
| d Pow                  | 9.0    | 5.11                                                         | 46.0                                                     |  |  |
| Dissipated Power Pd(W) | 12.0   | 4.75                                                         | 57.0                                                     |  |  |
| Dis                    | 15.0   | 4.67                                                         | 70.0                                                     |  |  |



\*The aluminum substrate side of the package outer shell is thermally connected to the heat sink via TIM (Thermal interface material). MingFa recommends the use of a high thermal conductive interface between the LED module and the LED cooler.

Either thermal grease, A thermal pad or a phase change thermal pad thickness 0.1-0.15mm is recommended.



\*Thermal resistance is a heat property and a measurement of a temperature difference by which an object or material resists a heat flow. Geometric shapes are different, the thermal resistance is different. Formula:  $\theta = (Ths - Ta)/Pd$ 

heta - Thermal Resistance [°C/W] ; Ths - Heatsink temperature ; Ta - Ambient temperature ;

\*The thermal resistance between the junction section of the light-emitting diode and the aluminum substrate side of the package outer shell is R<sub>junction-case</sub>, the thermal resistance of the TIM outside the package is R<sub>interface (TIM)</sub> [°C/W], the thermal resistance with the heat sink is  $R_{heatsink-ambient}$  [°C/W], and the ambient temperature is  $T_{ambient}$  [°C].

\*Thermal resistances outside the package  $R_{\text{interface (TIM)}}$  and  $R_{\text{heatsink-ambient}}$  can be integrated into the thermal resistance  $R_{\text{case-ambient}}$  at this point. Thus, the following formula is also used:  $T_{junction} = (R_{junction-case} + R_{case-ambient}) \cdot Pd + T_{ambient}$ 

Tel:+86-769-39023131 Fax:+86-(020)28819702 ext:22122 Email:sales@mingfatech.com Http://www.heatsinkled.com Http://www.mingfatech.com

