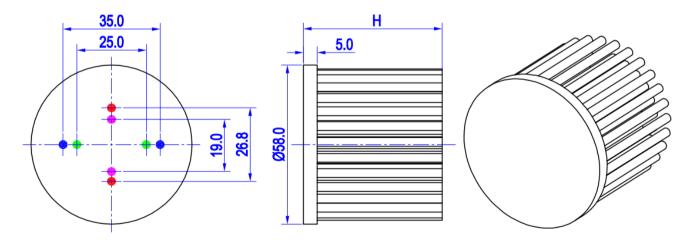


Tel:+86-769-39023131 Fax:+86-(020)28819702 ext:22122 Email:sales@mingfatech.com Http://www.heatsinkled.com Http://www.mingfatech.com

- B-Black
- C-Clear
- Z-Custom

Ex.order code - 12

Mounting Options - see graphics for


Notes:

- Mentioned models are an extraction of full product range.
- For specific mechanical adaptations please contact MingfaTech.
- means option 1 and 2 combined

details Combinations available

- MingfaTech reserves the right to change products or specifications without prior notice.

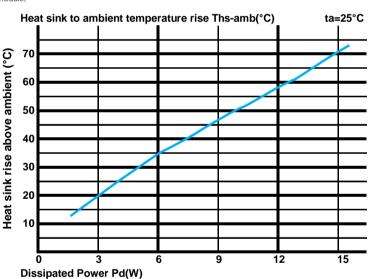
MOUNTING OPTION	Module type	Holder NO.	LEDiL products			THREAD	THREAD	THREAD HOLE
			Molly Series	Olivia series	Ronda series	IIIKEAD	DEPTH	DISTANCE
1		/	C15xxx;	FN14637-S	FN15xxx-xx;	M3	6.5mm	19.0mm/ 2-@180°
2	CLU026; CLU027 CLU028; CLU701	BJB Holder 47.319.6294.50				M3	6.5mm	25.0mm/ 2-@180° (Zhaga book 11)
2		AAG.STUCCHI 8100-G2						
3	CLU036; CLU038 CLU721; CLU711	/	C15xxx;	FN14637-S	FN15xxx-xx;	M3	6.5mm	26.8mm/ 2-@180°
4		BJB Holder 47.319.2134.50				M3	6.5mm	35.0mm/ 2-@ 180° (Zhaga book 3)
		AAG.STUCCHI 8101-G2						

Tel:+86-769-39023131 Fax:+86-(020)28819702 ext:22122 Email:sales@mingfatech.com Http://www.heatsinkled.com Http://www.mingfatech.com

GooLED-CIT-5830 Pin Fin Heat Sink Φ58mm for Citizen

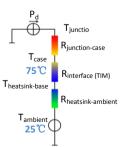
The product deta table

GOOLED	Model No.	GooLED-CIT-5830		
GooLED	Heatsink Size	Ф58хН30mm		
	Heatsink Material	AL1070		
	Finish	Black Anodized		
	Weight (g)	79.0		
	Dissipated power (Ths-amb,50°C)	10.0 (W)		
	Cooling surface area (mm ²)	27134		
	Thermal Resistance (Rhs-amb)	5.0 (°C/W)		


The thermal data table

* Please be aware the dissipated power Pd is not the same as the electrical power Pe of a LED module.

*To calculate the dissipated power please use the following formula: $Pd = Pe \times (I - \eta L)$.


Pd - Dissipated power ; Pe - Electrical power ; ηL = Light effciency of the LED module;

Pd = Pe x (1-ηL)		Heat sink to ambient thermal resistance Rhs-amb (°C/W)	Heat sink to ambient temperature rise Ths-amb (°C)
		GooLED-CIT-5830	
Dissipated Power Pd(W)	3.0	6.67	20.0
	6.0	5.83	35.0
	9.0	5.11	46.0
	12.0	4.75	57.0
	15.0	4.67	70.0

*The aluminum substrate side of the package outer shell is thermally connected to the heat sink via TIM (Thermal interface material). MingFa recommends the use of a high thermal conductive interface between the LED module and the LED cooler.

Either thermal grease, A thermal pad or a phase change thermal pad thickness 0.1-0.15mm is recommended.

*Thermal resistance is a heat property and a measurement of a temperature difference by which an object or material resists a heat flow. Geometric shapes are different, the thermal resistance is different. Formula: $\theta = (Ths - Ta)/Pd$

heta - Thermal Resistance [°C/W] ; Ths - Heatsink temperature ; Ta - Ambient temperature ;

*The thermal resistance between the junction section of the light-emitting diode and the aluminum substrate side of the package outer shell is R_{junction-case}, the thermal resistance of the TIM outside the package is R_{interface (TIM)} [°C/W], the thermal resistance with the heat sink is $R_{heatsink-ambient}$ [°C/W], and the ambient temperature is $T_{ambient}$ [°C].

*Thermal resistances outside the package $R_{\text{interface (TIM)}}$ and $R_{\text{heatsink-ambient}}$ can be integrated into the thermal resistance $R_{\text{case-ambient}}$ at this point. Thus, the following formula is also used: $T_{junction} = (R_{junction-case} + R_{case-ambient}) \cdot Pd + T_{ambient}$

Tel:+86-769-39023131 Fax:+86-(020)28819702 ext:22122 Email:sales@mingfatech.com Http://www.heatsinkled.com Http://www.mingfatech.com

