

NFCWL036B; NFCUL036B; NFCUL060B; With the Zhaga Book 3 Holders: Ideal Holder:50-2100NC; TE LED Holder:2213382-2; Direct mounting with machine screws M3x6.5mm, Green indicator marks. With the LEDiL products: Lena series: CN14xxx; C13xxx; C12xxx; Ronda series: FN15xxx-xx; Nichia COB LED modules name: NVCWL024Z; NVCWL024Z;

NVCLL024Z; NVNW S007Z; NJCW S024Z; With the Zhaga Book 11 Holders: BJB holder:47.319.6180.50; TE LED Holder:2213118-1;

TE LED Holder:2213118-1; Direct mounting with machine screws M3x8mm, Red indicator marks. With the LEDiL products: Lena series: CN14xxx; C13xxx; C12xxx; Ronda series: FN15xxx-xx;

GooLED-NIC-6860 Pin Fin Heat Sink Φ68mm for Nichia

Mounting Options and Drawings & Dimensions

3

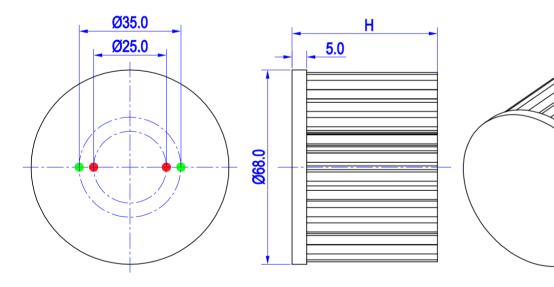
Example:GooLED-NIC-6860-B-1,2 Example:GooLED-NIC-68 1 Height (mm) Anodising Color B-Black C-Clear Z-Custom

Notes:

- Mentioned models are an extraction of full product range.
- For specific mechanical adaptations please contact MingfaTech.

means option 1 and 2 combined

details Combinations available


Ex.order code - 12

Mounting Options - see graphics for

MingfoTooh e the right to ch oducto oific vithout prior notice.

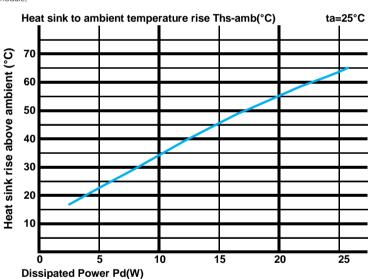
- Mingra i ech	reserves the	e right to	cnange	products	or specification	IS WI

MOUNTING Module type		Holder NO.	LEDiL products		THREAD	THREAD	THREAD HOLE	
OPTION	Module type	noider NO.	Lena series	Ronda series	INKLAD	DEPTH	DISTANCE	
N	/	None	None	None	None	None	None	
1	NVCWL024Z; NVCLL024Z;		M3	6 Emm	25.0mm/ 2-@180°			
I	NVNWS007Z; NJCWS024Z;	TE Holder 2213118-1	CN14xxx;	FN15xxx-xx	IVIJ	6.5mm	(Zhaga book 11)	
2	NFCWL036B; NFCLL036B;	Ideal Holder 50-2100NC	C13xxx; C12xxx;	,	·	M3	6.5mm	35.0mm/ 2-@180°
2	NFCWL060B; NFCLL060B;	TE Holder 2213382-2			CIVI	0.511111	(Zhaga book 3)	

GooLED-NIC-6860 Pin Fin Heat Sink Ø68mm for Nichia

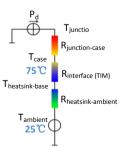
The product deta table

GooLED	Model No.	GooLED-NIC-6860	
GooLED	Heatsink Size	Ф68хН60mm	
	Heatsink Material	AL1070	
	Finish	Black Anodized	
	Weight (g)	176.0	
	Dissipated power (Ths-amb,50℃)	17.0 (W)	
	Cooling surface area (mm ²)	70017	
	Thermal Resistance (Rhs-amb)	2.94 (°C/W)	


The thermal data table

* Please be aware the dissipated power Pd is not the same as the electrical power Pe of a LED module.

*To calculate the dissipated power please use the following formula: $Pd = Pe \times (1 - \eta L)$.


Pd - Dissipated power ; Pe - Electrical power ; ηL = Light effciency of the LED module;

Pd = Pe x (1-ηL)		Heat sink to ambient thermal resistance Rhs-amb (°C/W)	Heat sink to ambient temperature rise Ths-amb (°C)	
(1-1 L)		GooLEI	ED-NIC-6860	
(M)	5.0	4.60	23.0	
er Pd(10.0	3.40	34.0	
d Pow	15.0	3.00	45.0	
issip	20.0	2.75	55.0	
	25.0	1.84	46.0	

*The aluminum substrate side of the package outer shell is thermally connected to the heat sink via TIM (Thermal interface material). MingFa recommends the use of a high thermal conductive interface between the LED module and the LED cooler.

Either thermal grease, A thermal pad or a phase change thermal pad thickness 0.1-0.15mm is recommended.

*Thermal resistance is a heat property and a measurement of a temperature difference by which an object or material resists a heat flow. Geometric shapes are different, the thermal resistance is different. Formula: $\theta = (Ths - Ta)/Pd$

heta - Thermal Resistance [°C/W] ; Ths - Heatsink temperature ; Ta - Ambient temperature ;

*The thermal resistance between the junction section of the light-emitting diode and the aluminum substrate side of the package outer shell is R_{junction-case}, the thermal resistance of the TIM outside the package is R_{interface (TIM)} [°C/W], the thermal resistance with the heat sink is $R_{heatsink-ambient}$ [°C/W], and the ambient temperature is $T_{ambient}$ [°C].

*Thermal resistances outside the package $R_{\text{interface (TIM)}}$ and $R_{\text{heatsink-ambient}}$ can be integrated into the thermal resistance $\mathsf{R}_{\text{case-ambient}}$ at this point. Thus, the following formula is also used: $T_{junction} = (R_{junction-case} + R_{case-ambient}) \cdot Pd + T_{ambient}$

Tel:+86-769-39023131 Fax:+86-(020)28819702 ext:22122 Email:sales@mingfatech.com Http://www.heatsinkled.com Http://www.mingfatech.com

