

Zhaga LED engine and radiator assembly is a unified future international standardization * Below you find an overview of LG Innotek COB's and LED modules which standard fit on the Pin Fin LED Heat Sinks.

- * In this way mechanical after work and related costs can be avoided, and lighting designers
- can standardize their designs on a limited number of LED Pin Fin LED Heat Sink.

LG Innotek 7W&10W COB series. LEMWM19480xxxxx; LEMWM19490xxxxx; With the Zhaga Book 3 holders for the green indicator marks. TE Connectivity Holder: 2213382-1; Without the holders for the blue indicator marks. Direct mounting with machine screws M3x6.5mm

LG Innotek LED Modules directly Mounting Options

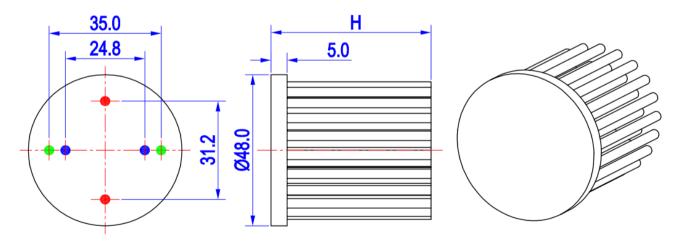
LG Innotek 16W&21W COB series.

- With the Zhaga Book 3 holders for the green indicator marks.

- Without the holders for the red indicator marks.
- Direct mounting with machine screws M3x6.5mm.

Tel:+86-769-39023131 Fax:+86-(020)28819702 ext:22122 Email:sales@mingfatech.com Http://www.heatsinkled.com Http://www.mingfatech.com

- Mentioned models are an extraction of full product range.


- For specific mechanical adaptations please contact MingfaTech.

means option 1 and 2 combined

Ex.order code - 12

- MingfaTech reserves the right to change products or specifications without prior notice.

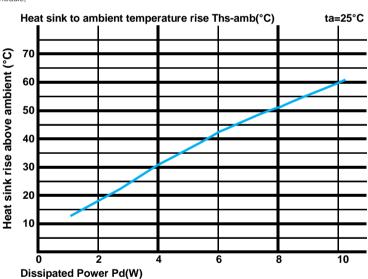
MOUNTING OPTION	Module type	Holder NO.	THREAD	THREAD DEPTH	THREAD HOLE DISTANCE
1	7W&10W COB	/	M3	6.5mm	24.8mm/ 2-@180°
2	16W&21W COB	/	M3	6.5mm	31.2mm/ 2-@180°
3		BJB Holder 47.319.2011.50	МЗ	6.5mm	35.0mm/ 2-@180° (Zhaga Book 3)
		TE Holder 2213130-1			
	7W&10W COB	TE Holder 2213382-1			

Tel:+86-769-39023131 Fax:+86-(020)28819702 ext:22122 Email:sales@mingfatech.com Http://www.heatsinkled.com Http://www.mingfatech.com

GooLED-LG-4830 Pin Fin Heat Sink Ø48mm for LG Innotek

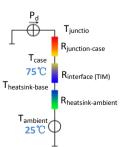
The product deta table

GOOLED	Model No.	GooLED-LG-4830
<u> </u>	Heatsink Size	Ф48хН30mm
ald the	Heatsink Material	AL1070
1445 E E - 161	Finish	Black Anodized
	Weight (g)	46.0
	Dissipated power (Ths-amb,50℃)	8.0 (W)
	Cooling surface area (mm ²)	15420
	Thermal Resistance (Rhs-amb)	6.25 (°C/W)


The thermal data table

* Please be aware the dissipated power Pd is not the same as the electrical power Pe of a LED module.

*To calculate the dissipated power please use the following formula: $Pd = Pe \times (I - \eta L)$.


Pd - Dissipated power ; Pe - Electrical power ; ηL = Light effciency of the LED module;

Pd = Pe x (1-ηL)		Heat sink to ambient thermal resistance Rhs-amb (°C/W)	Heat sink to ambient temperature rise Ths-amb (°C)
		GooLED-LG-4830	
Dissipated Power Pd(W)	2.0	9.00	18.0
	4.0	7.50	30.0
	6.0	7.00	42.0
	8.0	6.25	50.0
	10.0	5.90	59.0

*The aluminum substrate side of the package outer shell is thermally connected to the heat sink via TIM (Thermal interface material). MingFa recommends the use of a high thermal conductive interface between the LED module and the LED cooler.

Either thermal grease, A thermal pad or a phase change thermal pad thickness 0.1-0.15mm is recommended.

*Thermal resistance is a heat property and a measurement of a temperature difference by which an object or material resists a heat flow. Geometric shapes are different, the thermal resistance is different. Formula: $\theta = (Ths - Ta)/Pd$

heta - Thermal Resistance [°C/W] ; Ths - Heatsink temperature ; Ta - Ambient temperature ;

*The thermal resistance between the junction section of the light-emitting diode and the aluminum substrate side of the package outer shell is R_{junction-case}, the thermal resistance of the TIM outside the package is R_{interface (TIM)} [°C/W], the thermal resistance with the heat sink is $R_{heatsink-ambient}$ [°C/W], and the ambient temperature is $T_{ambient}$ [°C].

*Thermal resistances outside the package $R_{\text{interface (TIM)}}$ and $R_{\text{heatsink-ambient}}$ can be integrated into the thermal resistance $R_{\text{case-ambient}}$ at this point. Thus, the following formula is also used: $T_{junction} = (R_{junction-case} + R_{case-ambient}) \cdot Pd + T_{ambient}$

Tel:+86-769-39023131 Fax:+86-(020)28819702 ext:22122 Email:sales@mingfatech.com Http://www.heatsinkled.com Http://www.mingfatech.com

