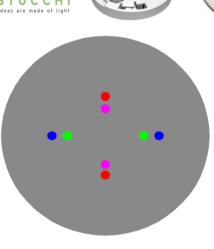


xLED-VOS-7030 Pin Fin LED Heat Sink Ф70mm for Vossloh-Schwabe


Features VS Benefits

- * The xLED-VOS-7030 Vossloh-Schwabe Pin Fin LED Heat Sinks are specifically designed for luminaires using the Vossloh-Schwabe LED engines.
- * Mechanical compatibility with direct mounting of the LED engines to the LED cooler and thermal performance matching the lumen packages.
- * For spotlight and downlight designs from 900 to 2,200 lumen.
- * Thermal resistance range Rth 3.85°C/W.
- * Modular design with mounting holes foreseen for direct mounting of Vossloh-Schwabe COB series.
- * Diameter 70.0mm standard height 30.0mm Other heights on request.
- * Forged from highly conductive aluminum.

Zhaga LED engine and radiator assembly is a unified future international standardization

- * Below you find an overview of Vossloh-Schwabe COB's and LED modules which standard fit on the Pin Fin LED Heat Sinks.
- * In this way mechanical after work and related costs can be avoided, and lighting designers can standardize their designs on a limited number of LED Pin Fin LED Heat Sink.

Vossloh-Schwabe LED Modules directly Mounting Options Vossloh-Schwabe LUGA Shop Gen. 5/ Gen. 6 COB Series (13.5*13.5)::

DMS124***H; DMS123***G

With the Zhaga Book 11 holders for the green indicator marks.

BJB holder: 47.319.6294.50;

AAG.STUCCHI: 8100-G2

Without the holders for the pink indicator marks.

Direct mounting with machine screws M3x6.5mm

Vossloh-Schwabe LUGA Shop Gen. 5/ Gen.6 COB Series (19.0*19.0):

DMS124***G; DMS125***H;
DMS125***G; DMS126***H;
DMS126***G; DMS128***H;
DMS128***G;

Vossloh-Schwabe LUGA Shop TW COB Series:

TW1914

With the Zhaga Book 3 holders for the blue indicator marks.

BJB holder: 47.319.2021.50:

AAG.STUCCHI: 8101-G2

Without the holders for the red indicator marks.

Direct mounting with machine screws M3x6.5mm.

Mounting Options and Drawings & Dimensions

Example:xLED-VOS-7030-B-1,2

Example:xLED-VOS-70 1 - 2 -

1 Height (mm)

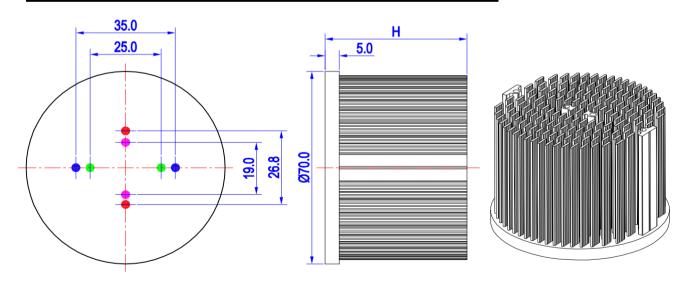
Anodising Color

B-Black

C-Clear

Z-Custom

Mounting Options - see graphics for details Combinations available

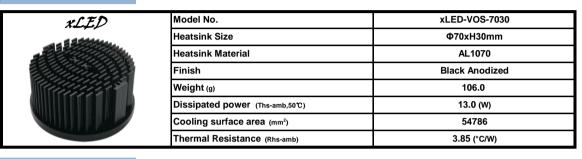

Ex.order code - 12

means option 1 and 2 combined

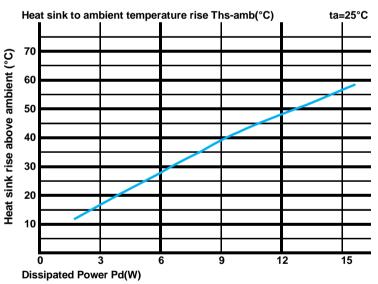
Notes:

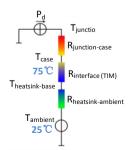
- Mentioned models are an extraction of full product range.
- For specific mechanical adaptations please contact MingfaTech.
- MingfaTech reserves the right to change products or specifications without prior notice.

MOUNTING OPTION	Module type	Holder NO.	THREAD	THREAD DEPTH	THREAD HOLE DISTANCE
1	COB series (13.5*13.5)	/	М3	6.5mm	19.0mm/ 2-@180°
2		BJB Holder 47.319.6294.50	М3	6.5mm	25.0mm/ 2-@180° (Zhaga book 11)
		AAG.STUCCHI 8100-G2	МЗ	6.5mm	
3	COB series (19.0*19.0)	/			26.8mm/ 2-@180°
4		BJB Holder 47.319.2021.50			35.0mm/ 2-@180° (Zhaga book 3)
		AAG.STUCCHI 8101-G2			


Tel:+86-769-39023131 Fax:+86-(020)28819702 ext:22122

Email:sales@mingfatech.com
Http://www.heatsinkled.com
Http://www.mingfatech.com


The product deta table


The thermal data table

- * Please be aware the dissipated power Pd is not the same as the electrical power Pe of a LED module.
- *To calculate the dissipated power please use the following formula: $Pd = Pe \times (1 \eta L)$.
- Pd Dissipated power; Pe Electrical power; $\eta L = \text{Light effciency of the LED module}$;

_				
Pd = Pe x (1-ηL)		Heat sink to ambient thermal resistance Rhs-amb (°C/W)	Heat sink to ambient temperature rise Ths-amb (°C)	
		xLED-VOS-7030		
Dissipated Power Pd(W)	3.0	5.33	16.0	
	6.0	4.50	27.0	
	9.0	4.33	39.0	
	12.0	3.92	47.0	
	15.0	3.73	56.0	

- *The aluminum substrate side of the package outer shell is thermally connected to the heat sink via TIM (Thermal interface material). MingFa recommends the use of a high thermal conductive interface between the LED module and the LED cooler.
- Either thermal grease, A thermal pad or a phase change thermal pad thickness 0.1-0.15mm is recommended.

- *Thermal resistance is a heat property and a measurement of a temperature difference by which an object or material resists a heat flow. Geometric shapes are different, the thermal resistance is different. Formula: $\theta = (Ths - Ta)/Pd$
- θ Thermal Resistance [°C/W]; Ths Heatsink temperature; Ta Ambient temperature;
- *The thermal resistance between the junction section of the light-emitting diode and the aluminum substrate side of the package outer shell is $R_{\text{function-case}}$, the thermal resistance of the TIM outside the package is $R_{\text{interface}}$ (TIM) ["CM], the thermal resistance with the heat sink is $R_{heatsink-ambient}$ [°C/W], and the ambient temperature is $T_{ambient}$ [°C].
- *Thermal resistances outside the package $R_{\text{interface (TIM)}}$ and $R_{\text{heatsink-ambient}}$ can be integrated into the thermal resistance $R_{\text{case-ambient}}$ at this point. Thus, the following formula is also used: $T_{junction} = (R_{junction\text{-}case} + R_{case\text{-}ambient}) \cdot Pd + T_{ambient}$

Tel:+86-769-39023131 Fax:+86-(020)28819702 ext:22122 Email:sales@mingfatech.com Http://www.heatsinkled.com Http://www.mingfatech.com

