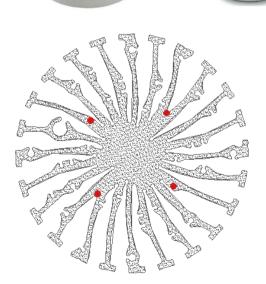


EtraLED-GE-13050 GE Modular Passive Star Heat Sink Φ130mm


Features VS Benefits

- * The EtraLED-GE-13050 GE Lighting Modular Passive Star LED Heat Sinks are specifically designed luminaires using the GE Lighting LED engines.
- * Mechanical compatibility with direct mounting of the LED engines to the LED cooler and thermal performance matching the lumen packages.
- * For spotlight and downlight designs from 2700 to 6,900 lumen.
- * Thermal resistance range Rth 1.09°C/W.
- * Modular design with mounting holes foreseen for direct mounting of GE lighting Infusion™ LED engines.
- * Diameter 130.0mm standard height 50mm Other heights on request.
- * Forged from highly conductive aluminum.

Zhaga LED engine and radiator assembly is a unified future international standardization

- * Below you find an overview of GE COB's and LED modules which standard fit on the srar LED heat sinks.
- * In this way mechanical after work and related costs can be avoided, and lighting designers can standardize their designs on a limited number of srar LED heat sinks.

For the GE lighting Infusion™ M LED modules.

Infusion™ M3000

M3000/840/W/G4; M3000/930/W/G4;

Infusion™ M4500

M4500/827/W/G4; M4500/830/W/G4;

For the GE lighting Infusion™ DLM LED modules.

Infusion™ DLMM3000

DLM3000/927; DLM3000/930;

Infusion™ DLM4000

Please refer to the "http://www.gelighting.com/LightingWeb/emea/" data ovided on the manual.

Zhaga Book5 Green indicator marks: Direct mounting with machine screws M3.5x6.5mm;

Mounting Options and Drawings & Dimensions

Example: EtraLED-GE-13050-B-1

Example:EtraLED-GE-130 1 - 2 - 3

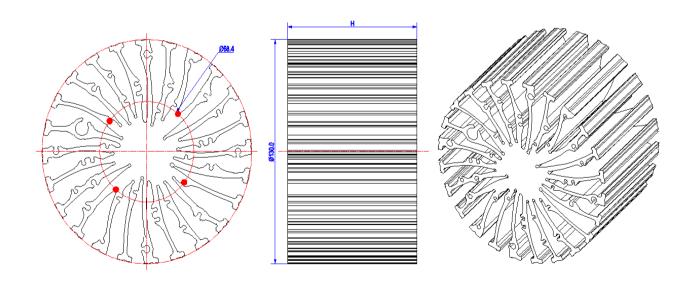
2 Anodising Color

B-Black

C-Clear

Z-Custom

Mounting Options - see graphics for details Combinations available


Ex.order code - 12

means option 1 and 2 combined

Notes:

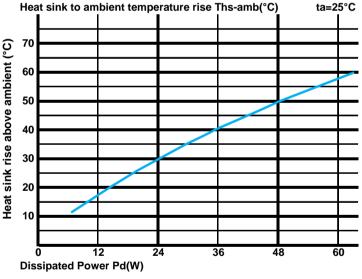
- Mentioned models are an extraction of full product range.
- For specific mechanical adaptations please contact MingfaTech.
- MingfaTech reserves the right to change products or specifications without prior notice.

MOUNTING OPTION	Module type	Holder NO.	THREAD	THREAD DEPTH	THREAD HOLE DISTANCE
1	Infusion™ M Infusion™ DLM	GE Lighting	M3.5	6.5mm	Ф58.4mm/ 4-M3.5 (Zhaga book5)

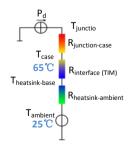
GE

Lighting

The product deta table



Model No.	EtraLED-GE-13050	
Heatsink Size	Ф130xH50mm	
Heatsink Material	AL6063-T5	
Finish	Black Anodized	
Weight (g)	553.0	
Dissipated power (Ths-amb,50℃)	49.0 (W)	
Cooling surface area (mm²)	157205	
Thermal Resistance (Rhs-amb)	1.02 (°C/W)	


The thermal data table

- * Please be aware the dissipated power Pd is not the same as the electrical power Pe of a LED module.
- *To calculate the dissipated power please use the following formula: $Pd = Pe \times (1-\eta L)$.
- Pd Dissipated power ; Pe Electrical power ; $\eta L = \text{Light effciency of the LED module}$;

_				
Pd = Pe x (1-ηL)		Heat sink to ambient thermal resistance Rhs-amb (°C/W)	Heat sink to ambient temperature rise Ths-amb (°C)	
		EtraLED-GE-13050		
Dissipated Power Pd(W)	12.0	1.33	16.0	
	24.0	1.21	29.0	
	36.0	1.11	40.0	
	48.0	1.03	49.5	
	60.0	0.95	57.0	

*The aluminum substrate side of the package outer shell is thermally connected to the heat sink via TIM (Thermal interface material). MingFa recommends the use of a high thermal conductive interface between the LED module and the LED cooler. Either thermal grease, A thermal pad or a phase change thermal pad thickness 0.1-0.15mm is recommended.

- *Thermal resistance is a heat property and a measurement of a temperature difference by which an object or material resists a heat Geometric shapes are different, the thermal resistance is different. Formula: $\theta = (Ths Ta)/Pd$
- θ Thermal Resistance [°C/W] ; Ths - Heatsink temperature ; Ta - Ambient
- *The thermal resistance between the junction section of the light-emitting diode and the aluminum substrate side of the package outer shell is $R_{junction-case}$, the thermal resistance of the TIM outside the package is $R_{interface}(TIM)$ [°C/W], the thermal resistance with the heat sink is $R_{heatsink-ambient}$ [°C/W], and the ambient temperature is $T_{ambient}$ [°C].
- *Thermal resistances outside the package $R_{interface (TIM)}$ and $R_{heatsink-ambient}$ can be integrated into the thermal resistance $R_{case-ambient}$ at this point. Thus, the following formula is also used: $T_{junction} = (R_{junction-case} + R_{case-ambient}) \cdot Pd + T_{ambient}$

