xLED-CRE-7030 Pin Fin Heat Sink Φ70mm for Cree # **Features VS Benefits** - * The xLED-CRE-7030 Cree Pin Fin LED Heat Sinks are specifically designed for luminaires using the Cree LED engines. - * Mechanical compatibility with direct mounting of the LED engines to the LED cooler and thermal performance matching the lumen packages. - * For spotlight and downlight designs from 900 to 2,200 lumen. - * Thermal resistance range Rth 3.85°C/W. - * Modular design with mounting holes foreseen for direct mounting of Cree® XLamp® COB series. - * Diameter 70mm standard height 30mm, Other heights on request. - * Forged from highly conductive aluminum. ### Zhaga LED engine and radiator assembly is a unified future international standardization - * Below you find an overview of Cree COB's and LED modules which standard fit on the Pin Fin LED Heat Sinks. - * In this way mechanical after work and related costs can be avoided, and lighting designers can standardize their designs on a limited number of LED Pin Fin LED Heat Sink. # **Cree LED Modules directly Mounting Options** Cree® XLamp® COB Series: Xlamp CXA 13xx; Xlamp CXB 13xx; With the Zhaga Book 3 holders for the green indicator marks. Direct mounting with machine screws M3x6.5mm. Olivia series: FN14637-S; FN14828-M; ## Cree® XLamp® COB Series: Xlamp CXA 18xx; Xlamp CXB 18xx; #### Cree® XLamp® COB Series: Xlamp CXA 15xx; Xlamp CXB 15xx BJB Holder:47.319.6104.50 Direct mounting with machine screws M3x6.5mm. XLED xLED-CRE-7030 Pin Fin Heat Sink Ф70mm for Cree # **Mounting Options and Drawings & Dimensions** Example:xLED-CRE-7030-B-1,2 Example:xLED-CRE-70 1 - 2 - 1 Height (mm) Anodising Color B-Black C-Clear **Z-Custom** Mounting Options - see graphics for details Combinations available Ex.order code - 12 means option 1 and 2 combined ## Notes: - Mentioned models are an extraction of full product range. - For specific mechanical adaptations please contact MingfaTech. - MingfaTech reserves the right to change products or specifications without prior notice. | MOUNTING
OPTION | Module type | Holder NO. | LEDiL products | | THREAD | THREAD | THREAD HOLE | |--------------------|------------------------------------|------------------------------|--------------------------|--------------|--------|--------|------------------------------------| | | | | Olivia series | Ronda series | IREAD | DEPTH | DISTANCE | | 1 | Xlamp CXA 13xx;
Xlamp CXB 13xx; | BJB Holder
47.319.6104.50 | FN14637-S; | FN15xxx-xx; | МЗ | 6.5mm | 25.0mm/ 2-@180°
(Zhaga Book 11) | | | | IDEAL Holder
50-2001CR | | | | | | | | Xlamp CXA 15xx;
Xlamp CXB 15xx; | BJB Holder
47.319.6104.50 | / | | | | | | | | AAG.STUCCHI
8400-G2 | | | | | | | | | IDEAL Holder
50-2001CR | | | | | | | 2 | Xlamp CXA 18xx;
Xlamp CXB 18xx; | BJB Holder
47.319.2131.50 | FN14637-S;
FN14828-M; | | МЗ | 6.5mm | 35.0mm/ 2-@180°
(Zhaga Book 3) | | | | IDEAL Holder
50-2101CR | | | | | | # The product deta table ## The thermal data table - * Please be aware the dissipated power Pd is not the same as the electrical power Pe of a LED module. - *To calculate the dissipated power please use the following formula: $Pd = Pe \times (I \eta L)$. - Pd Dissipated power ; Pe Electrical power ; $\eta L =$ Light effciency of the LED module; | Pd = Pe x
(1-ηL) | | Heat sink to ambient
thermal resistance
Rhs-amb (°C/W) | Heat sink to ambient
temperature rise
Ths-amb (°C) | | | |------------------------|------|--|--|--|--| | | | xLED-CRE-7030 | | | | | (W) | 3.0 | 5.33 | 16.0 | | | | er Pd(| 6.0 | 4.50 | 27.0 | | | | Dissipated Power Pd(W) | 9.0 | 4.33 | 39.0 | | | | | 12.0 | 3.92 | 47.0 | | | | | 15.0 | 3.73 | 56.0 | | | - *The aluminum substrate side of the package outer shell is thermally connected to the heat sink via TIM (Thermal interface material). - $\label{thm:mingFa} \mbox{MingFa recommends the use of a high thermal conductive interface between the LED module and the LED cooler.}$ $Either thermal\ grease, A\ thermal\ pad\ or\ a\ phase\ change\ thermal\ pad\ thickness\ 0.\ I-0.\ I\ 5mm\ is\ recommended.$ - *Thermal resistance is a heat property and a measurement of a temperature difference by which an object or material resists a heat flow. Geometric shapes are different, the thermal resistance is different. Formula: $\theta = (Ths Ta)/Pd$ - θ Thermal Resistance [°C/W] ; Ths - Heatsink temperature ; Ta - Ambient temperature ; - *The thermal resistance between the junction section of the light-emitting diode and the aluminum substrate side of the package outer shell is $R_{\text{junction-case}}$, the thermal resistance of the TIM outside the package is $R_{\text{interface}}$ (TIM), [°C/M], the thermal resistance with the heat sink is $R_{\text{heatsink-ambient}}$ [°C/M], and the ambient temperature is T_{ambient} [°C/]. - *Thermal resistances outside the package $R_{interface\,(TIM)}$ and $R_{heatsink-ambient}$ can be integrated into the thermal resistance $R_{case-ambient}$ at this point. Thus, the following formula is also used: $T_{junction} = (R_{junction\text{-}case} + R_{case\text{-}ambient}) \cdot Pd + T_{ambient}$