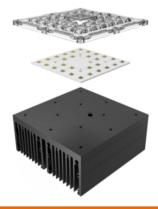
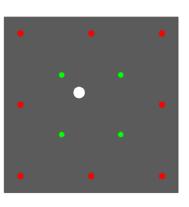


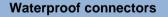
tLED-115×115×50 Modular Passive LED Heatsink


Features VS Benefits


- * Mechanical compatibility with direct mounting of the SMD products to the LED cooler and
- thermal performance matching the lumen packages.
- * For flood light, street light and high bay designs from 2800 to 7200 lumen.
- * Thermal resistance range Rth 1.04°C/W.
- * Product size: L115×W115×H50mm- Standard width 115.0mm, Other widths on request.
- * Extruded from highly conductive aluminium for optimal thermal performance (AL6063-T5), aluminium 6063-T5 thermal conductivity is higher than ACD12 1.5 times.
- * 2 standard colors clear anodised black anodised
- * Waterproof level designs from IP65 to IP67.
- * With the SMD products (3030, 2835, 5050.....): Bridgelux, Cree, Edison, Citizen, LG Innotek Lumileds , Luminus, Lumens , Nichia , Osram , Prolight Opto , Seoul , Samsung , Sharp.

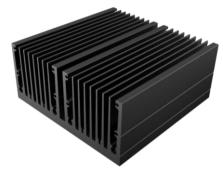
Adura LED engine and radiator assembly directly Mounting Options

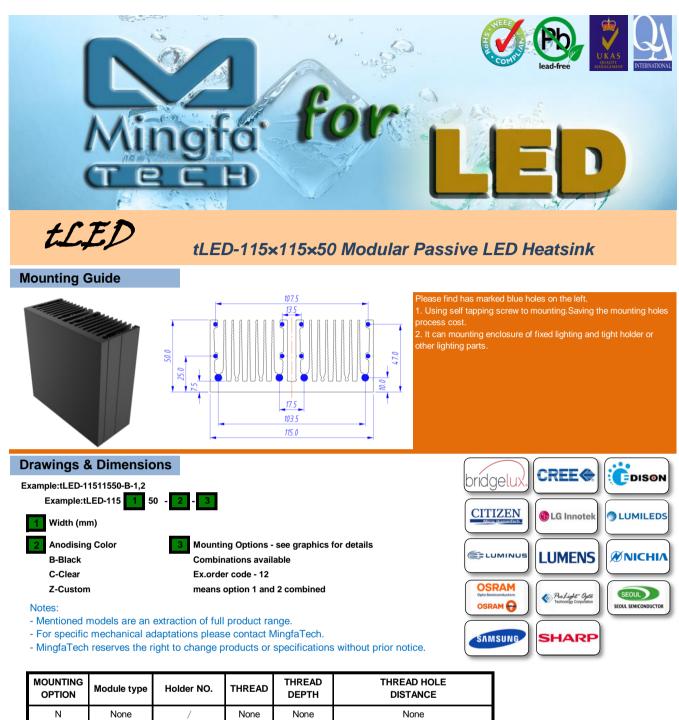
* Below you find an overview of SMD products which standard fit on the tLED series coolers. * In this way mechanical after work and related costs can be avoided, and lighting designers can standardize their designs on a limited number of LED coolers.


Mounting Options

MCPCB for the green indicator marks. Direct mounting with machine screws M3x6.0mm;

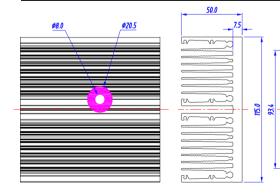
- * LEDIL Lens "CS16104_STRADELLA-IP-28" for the red indicator
- Direct mounting with machine screws M3x6.0mm;
- Cable feed-through holder for the pink indicator marks.




ctor with tLED heat sink

- - Mingfa tech product number
 - 21000001-04 (M8) 21000002-04 (M10)

Tel:+86-769-33252828 +86-769-33251919 E-fax:+86-(020)28819702 ext:22122 Email:sales@mingfatech.com Http://www.heatsinkled.com Http://www.mingfatech.com



115.0 93.4

OPTION	Module type	Holder NO.	THREAD	DEPTH	DISTANCE
Ν	None	/	None	None	None
1	MCPCB	/	M3	6.0mm	39.0x39.0mm/ 4-@90°
2	LEDIL Lens	/	M3	6.0mm	93.4x93.4mm/ 4-@90°
3	Wire Holder	/	Φ8.0 THRU Φ20.5		8.0x8.0mm

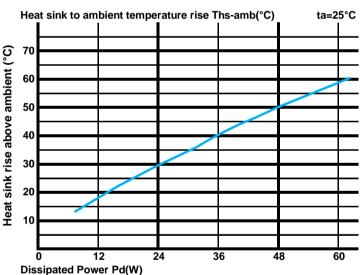
Tel:+86-769-33252828 +86-769-33251919 E-fax:+86-(020)28819702 ext:22122 Email:sales@mingfatech.com Http://www.heatsinkled.com Http://www.mingfatech.com

tLE,

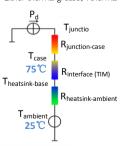
tLED-115×115×50 Modular Passive LED Heatsink

The product deta table

tLED	Model No.	tLED-115×115×50
	Heatsink Size (mm)	L115×W115×H50
	Heatsink Material	AL6063-T5
	Finish	Black Anodized
	Weight (g)	781.0
	Dissipated power (Ths-amb,50°C)	48.0 (W)
	Cooling surface area (mm ²)	216228
	Thermal Resistance (Rhs-amb)	1.04 (°C/W)


The thermal data table

* Please be aware the dissipated power Pd is not the same as the electrical power Pe of a LED module.


*To calculate the dissipated power please use the following formula: $Pd = Pe \times (1 - \eta L)$.

Pd - Dissipated power ; Pe - Electrical power ; ηL = Light effciency of the LED module;

Pd = Pe x (1-ηL)		Heat sink to ambient thermal resistance Rhs-amb (°C/W)	Heat sink to ambient temperature rise Ths-amb (°C)
		tLED-115×115×50	
Dissipated Power Pd(W)	12.0	1.42	17.0
	24.0	1.21	29.0
	36.0	1.11	40.0
	48.0	1.04	50.0
	60.0	0.97	58.0

*The aluminum substrate side of the package outer shell is thermally connected to the heat sink via TIM (Thermal interface material). MingFa recommends the use of a high thermal conductive interface between the LED module and the LED cooler. Either thermal grease, A thermal pad or a phase change thermal pad thickness 0.1-0.15mm is recommended.

*Thermal resistance is a heat property and a measurement of a temperature difference by which an object or material resists a heat flow. Geometric shapes are different, the thermal resistance is different. Formula: $\theta = (Ths - Ta)/Pd$

 $\theta\,$ - Thermal Resistance [°C/W] ; $\,$ Ths - Heatsink temperature ; $\,$ Ta - Ambient temperature ;

*The thermal resistance between the junction section of the light-emitting diode and the aluminum substrate side of the package outer shell is $R_{junction-case}$, the thermal resistance of the TIM outside the package is $R_{interface}$ (IM) [°C/W], the thermal resistance with the heat sink is $R_{hastish,ambient}$ [°C/W], and the ambient temperature is $T_{ambient}$ [°C].

*Thermal resistances outside the package $R_{interface (TIM)}$ and $R_{heatsink-ambient}$ can be integrated into the thermal resistance $R_{case-ambient}$ at this point. Thus, the following formula is also used: $T_{junction}=(R_{junction-case}+R_{case-ambient})\cdot Pd+T_{ambient}$

Tel:+86-769-33252828 +86-769-33251919 E-fax:+86-(020)28819702 ext:22122 Email:sales@mingfatech.com Http://www.heatsinkled.com Http://www.mingfatech.com

