

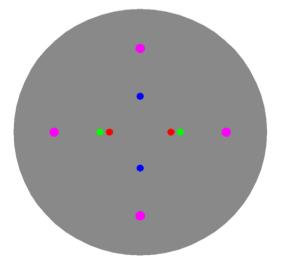
GooLED-LUN-11080 Pin Fin LED Heat Sink Φ110mm for Luminus

Features VS Benefits

- * The GooLED-LUN-11080 Luminus Pin Fin LED Heat Sinks are specifically designed for luminaires using the Luminus LED engines.
- * Mechanical compatibility with direct mounting of the LED engines to the LED cooler and thermal performance matching the lumen packages.
- * For spotlight and downlight designs from 2,500 to 7,000 lumen.
- * Thermal resistance range Rth 1.14°C/W.
- * Modular design with mounting holes foreseen for direct mounting of Luminus COB series.
- * Diameter 110mm standard height 80mm, Other heights on request.
- * Forged from highly conductive aluminum.

Zhaga LED engine and radiator assembly is a unified future international standardization

- * Below you find an overview of Luminus COB's and LED modules which standard fit on the Pin Fin LED Heat Sinks.
- * In this way mechanical after work and related costs can be avoided, and lighting designers can standardize their designs on a limited number of LED Pin Fin LED Heat Sink.



Luminus LED Modules directly Mounting Options Luminus COB series.

Luminus COB series.

TE Connectivity Holder: 2213258-1;

Direct mounting with machine screws M3x6.5mm.

With the LEDiL products:

Lena series: CN12xxx:

Luminus COB series.

With the Zhaga Book 3 holders for the green indicator marks.

Without the holders for the blue indicator marks.

With the LEDiL products:

Lena series: CN12xxx; CN13xxx; Stella Series: FN13xxx-xx; FN14xxx-xx; FN15xxx-xx;

Stella Series mounting hole for the pink indicator marks.

Direct mounting with machine screws M4x8.5mm.

GooLED-LUN-11080 Pin Fin LED Heat Sink Φ110mm for Luminus

Mounting Options and Drawings & Dimensions

Example:GooLED-LUN-11080-B-1,2

Example:GooLED-LUN-110 1 - 2 - 3

1 Height (mm)

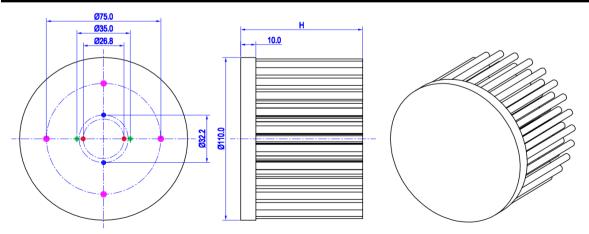
Anodising Color

B-Black

C-Clear

Z-Custom

Mounting Options - see graphics for details Combinations available

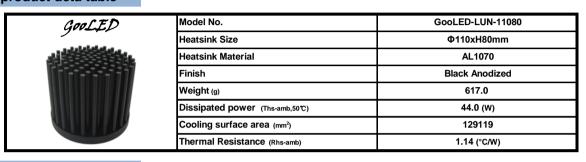

Ex.order code - 12

means option 1 and 2 combined

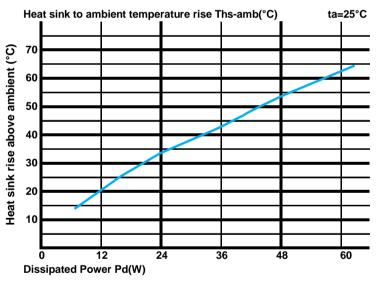
Notes:

- Mentioned models are an extraction of full product range.
- For specific mechanical adaptations please contact MingfaTech.
- MingfaTech reserves the right to change products or specifications without prior notice.

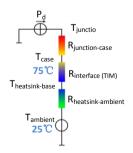
MOUNTING OPTION	Module type	Holder NO.	LEDiL products		TUDEAD	THREAD	THREAD HOLE
			Stella Series	Lena series	THREAD	DEPTH	DISTANCE
1	CIM/CLM/CXM-14;	/	FN13xxx-xx; FN14xxx-xx; FN15xxx-xx;	CN12xxx; CN13xxx;	М3	6.5mm	26.8mm/ 2-@180°
2	CLM-22; CXM-22;	/			М3	6.5mm	32.2mm/ 2-@180°
3		BJB Holder 47.319.2030.50			МЗ	6.5mm	35.0mm/ 2-@180° (Zhaga book 3)
		TE Holder 2213480-1					
	CXM-18;	BJB Holder 47.319.2280.50		CN12xxx;			
		TE Holder 2213258-1					
	CIM/CLM/CXM-14;	BJB Holder 47.319.2021.50		CN12xxx; CN13xxx;			
		TE Holder 2213254-1					
4	LEDiL Lens	/	Stella Series	/	M4	8.5mm	75.0mm/ 4-@90°



Tel:+86-769-39023131
Fax:+86-(020)28819702 ext:22122
Email:sales@mingfatech.com
Http://www.heatsinkled.com
Http://www.mingfatech.com


The product deta table

The thermal data table


- * Please be aware the dissipated power Pd is not the same as the electrical power Pe of a LED module.
- *To calculate the dissipated power please use the following formula: $Pd = Pe \times (I \eta L)$.
 - Pd Dissipated power ; Pe Electrical power ; $\eta L = \text{Light effciency of the LED module};$

Pd = Pe x (1-ηL)		Heat sink to ambient thermal resistance Rhs-amb (°C/W)	Heat sink to ambient temperature rise Ths-amb (°C)		
		GooLED-LUN-11080			
Dissipated Power Pd(W)	12.0	1.67	20.0		
	24.0	1.38	33.0		
	36.0	1.17	42.0		
	48.0	1.10	53.0		
	60.0	1.03	62.0		

- *The aluminum substrate side of the package outer shell is thermally connected to the heat sink via TIM (Thermal interface material).
- $\label{thm:mingFa} \mbox{MingFa recommends the use of a high thermal conductive interface between the LED module and the LED cooler.}$

Either thermal grease, A thermal pad or a phase change thermal pad thickness 0.1-0.15mm is recommended.

- *Thermal resistance is a heat property and a measurement of a temperature difference by which an object or material resists a heat flow. Geometric shapes are different, the thermal resistance is different. Formula: $\theta = (Ths Ta)/Pd$
- $\theta\,$ Thermal Resistance [°C/W] ; Ths - Heatsink temperature ; Ta - Ambient temperature ;
- *The thermal resistance between the junction section of the light-emitting diode and the aluminum substrate side of the package outer shell is $R_{\text{junction-case}}$, the thermal resistance of the TIM outside the package is $R_{\text{interface}}$ (TIM), [°C/M], the thermal resistance with the heat sink is $R_{\text{heatsink-ambient}}$ [°C/M], and the ambient temperature is T_{ambient} [°C/].
- *Thermal resistances outside the package $R_{interface\,(TIM)}$ and $R_{heatsink-ambient}$ can be integrated into the thermal resistance $R_{case-ambient}$ at this point. Thus, the following formula is also used:

 $T_{junction} = (R_{junction-case} + R_{case-ambient}) \cdot Pd + T_{ambient}$

