

xLED-CIT-4530 Pin Fin Heat Sink Φ45mm for Citizen

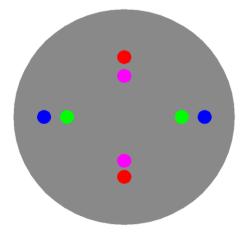
Features VS Benefits

- * The xLED-CIT-4530 Citizen Pin Fin LED Heat Sinks are specifically designed for luminaires using the Citizen LED engines.
- * Mechanical compatibility with direct mounting of the LED engines to the LED cooler and thermal performance matching the lumen packages.
- * For spotlight and downlight designs from 300 to 1,200 lumen.
- * Thermal resistance range Rth 7.14°C/W.
- * Modular design with mounting holes foreseen for direct mounting of citizen COB series.
- * Diameter 45mm standard height 30mm, Other heights on request.
- * Forged from highly conductive aluminum.

Zhaga LED engine and radiator assembly is a unified future international standardization

- * Below you find an overview of Citizen COB's and LED modules which standard fit on the Pin Fin LED Heat Sinks.
- * In this way mechanical after work and related costs can be avoided, and lighting designers can standardize their designs on a limited number of LED Pin Fin LED Heat Sink.

STUCCHI



CLU026-12xxxx; CLU027-12xxxx;

CLU028-12xxxx;

Citizen High intensity COB Series:

CLU701-03xxxx;

With the Zhaga Book 11 holders for the green indicator marks. BJB holder: 47.319.6294.50; AAG.STUCCHI: 8100-G2 Without the holders for the pink indicator marks.

Citizen LED Modules directly Mounting Options

Citizen COB version 4, version 5, version 6 Series:

CLU038-12xxxx

Citizen High intensity COB Series:

Molly series: C15xxx;

XLED

xLED-CIT-4530 Pin Fin Heat Sink Ф45mm for Citizen

Mounting Options and Drawings & Dimensions

Example:xLED-CIT-4530-B-1,2

Example:xLED-CIT-45 1

Height (mm)

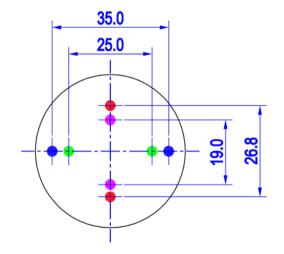
Anodising Color

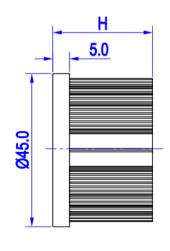
B-Black

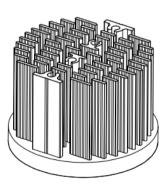
C-Clear

Z-Custom

Mounting Options - see graphics for details Combinations available

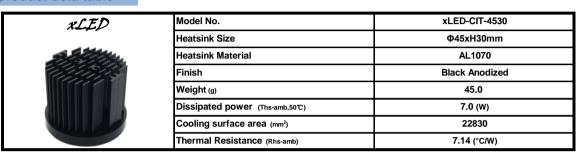

Ex.order code - 12

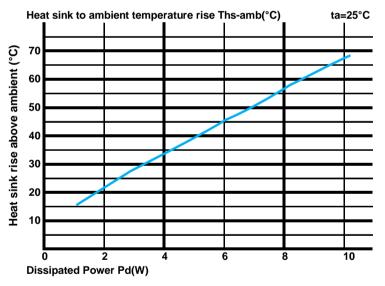

means option 1 and 2 combined


Notes:

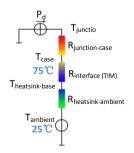
- Mentioned models are an extraction of full product range.
- For specific mechanical adaptations please contact MingfaTech.
- MingfaTech reserves the right to change products or specifications without prior notice.

MOUNTING OPTION	Module type	Holder NO.	LEDiL products			THREAD	THREAD	THREAD HOLE
			Molly Series	Olivia series	Ronda series	IIIKLAD	DEPTH	DISTANCE
1	CLU026; CLU027 CLU028; CLU701	/	C15xxx;	FN14637-S	FN15xxx-xx;	M3	6.5mm	19.0mm/ 2-@180°
2		BJB Holder 47.319.6294.50				МЗ	6.5mm	25.0mm/ 2-@180° (Zhaga book 11)
		AAG.STUCCHI 8100-G2						
3	CLU036; CLU038 CLU721; CLU711	/	C15xxx;	FN14637-S	FN15xxx-xx;	M3	6.5mm	26.8mm/ 2-@180°
4		BJB Holder 47.319.2134.50				МЗ	6.5mm	35.0mm/ 2-@180° (Zhaga book 3)
		AAG.STUCCHI 8101-G2						




The product deta table

The thermal data table


- * Please be aware the dissipated power Pd is not the same as the electrical power Pe of a LED module.
- *To calculate the dissipated power please use the following formula: $Pd = Pe \times (1-\eta L)$.
- Pd Dissipated power ; Pe Electrical power ; $\eta L =$ Light effciency of the LED module;

Pd = Pe x (1-ηL)		Heat sink to ambient thermal resistance Rhs-amb (°C/W)	Heat sink to ambient temperature rise Ths-amb (°C)		
		xLED-CIT-4530			
(w.	2.0	10.50	21.0		
er Pd(4.0	8.50	34.0		
Dissipated Power Pd(W)	6.0	7.50	45.0		
	8.0	7.00	56.0		
	10.0	6.70	67.0		

- *The aluminum substrate side of the package outer shell is thermally connected to the heat sink via TIM (Thermal interface material).
- $\label{thm:mingFa} \mbox{MingFa recommends the use of a high thermal conductive interface between the LED module and the LED cooler.}$

 $Either thermal\ grease, A\ thermal\ pad\ or\ a\ phase\ change\ thermal\ pad\ thickness\ 0.\ I-0.\ I\ 5mm\ is\ recommended.$

- *Thermal resistance is a heat property and a measurement of a temperature difference by which an object or material resists a heat flow. Geometric shapes are different, the thermal resistance is different. Formula: $\theta = (Ths Ta)/Pd$
- $\theta\,$ Thermal Resistance [°C/W] ; Ths - Heatsink temperature ; Ta - Ambient temperature ;
- *The thermal resistance between the junction section of the light-emitting diode and the aluminum substrate side of the package outer shell is $R_{junction-case}$, the thermal resistance of the TIM outside the package is $R_{interface (TIM)} [^{\circ}C/M]$, the thermal resistance with the heat sink is $R_{heatsink-anbient} [^{\circ}C/M]$, and the ambient temperature is $T_{ambient} [^{\circ}C]$.
- *Thermal resistances outside the package $R_{interface (TIM)}$ and $R_{heatsink-ambient}$ can be integrated into the thermal resistance $R_{case-ambient}$ at this point. Thus, the following formula is also used: $T_{junction} = (R_{junction-case} + R_{case-ambient}) \cdot Pd + T_{ambient}$

